James E Amburgey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12044645/publications.pdf

Version: 2024-02-01

840776 752698 21 619 11 20 citations h-index g-index papers 21 21 21 637 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Revisiting the Gage–Bidwell Law of Dilution in Relation to the Effectiveness of Swimming Pool Filtration and the Risk to Swimming Pool Users from Cryptosporidium. Water (Switzerland), 2021, 13, 2350.	2.7	О
2	Calculation and uncertainty of zeta potentials of microorganisms in a 1:1 electrolyte with a conductivity similar to surface water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124097.	4.7	21
3	Turbidity reduction in drinking water by coagulation-flocculation with chitosan polymers. Journal of Water and Health, 2019, 17, 204-218.	2.6	38
4	Green synthesis of nanoscale anion exchange resin for sustainable water purification. Environmental Science: Water Research and Technology, 2018, 4, 1685-1694.	2.4	11
5	A full-scale study of Cryptosporidium parvum oocyst and Cryptosporidium-sized microsphere removals from swimming pools via sand filtration. Water Quality Research Journal of Canada, 2017, 52, 18-25.	2.7	2
6	Removals of cryptosporidium parvum oocysts and cryptosporidium-sized polystyrene microspheres from swimming pool water by diatomaceous earth filtration and perlite-sand filtration. Journal of Water and Health, 2017, 15, 374-384.	2.6	6
7	A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration. Journal of Water and Health, 2016, 14, 109-120.	2.6	7
8	High-Capacity and Rapid Removal of Refractory NOM Using Nanoscale Anion Exchange Resin. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18540-18549.	8.0	23
9	Evaluation of alternative DNA extraction processes and real-time PCR for detecting Cryptosporidium parvum in drinking water. Water Science and Technology: Water Supply, 2015, 15, 1295-1303.	2.1	3
10	Removal of Cryptosporidium and polystyrene microspheres from swimming pool water with sand, cartridge, and precoat filters. Journal of Water and Health, 2012, 10, 31-42.	2.6	13
11	Comparison of Hollow-Fiber Ultrafilters with Pleated Capsule Filters for Surface and Tap Water Samples Using U.S. EPA Method 1623. Journal of Environmental Engineering, ASCE, 2012, 138, 899-901.	1.4	6
12	Disposable swim diaper retention of Cryptosporidium-sized particles on human subjects in a recreational water setting. Journal of Water and Health, 2011, 9, 653-658.	2.6	6
13	Removal of <i>Cryptosporidium</i> -Sized Polystyrene Microspheres from Swimming Pool Water with a Sand Filter with and without Added Perlite Filter Media. Journal of Environmental Engineering, ASCE, 2011, 137, 1205-1208.	1.4	6
14	Comparison of Hollowâ€Fiber Ultrafiltration to the USEPA VIRADEL Technique and USEPA Method 1623. Journal of Environmental Quality, 2009, 38, 822-825.	2.0	59
15	Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100-L tap water samples. Journal of Microbiological Methods, 2008, 73, 92-99.	1.6	118
16	Comparison of Conventional and Biological Filter Performance for <i>Cryptosporidium</i> and microsphere removal. Journal - American Water Works Association, 2005, 97, 77-91.	0.3	15
17	Strategic Filter Backwashing Techniques and Resulting Particle Passage. Journal of Environmental Engineering, ASCE, 2005, 131, 535-547.	1.4	20
18	Development of a Rapid Method for Simultaneous Recovery of Diverse Microbes in Drinking Water by Ultrafiltration with Sodium Polyphosphate and Surfactants. Applied and Environmental Microbiology, 2005, 71, 6878-6884.	3.1	214

#	Article	IF	CITATIONS
19	Optimization of the extended terminal subfluidization wash (ETSW) filter backwashing procedure. Water Research, 2005, 39, 314-330.	11.3	28
20	Effect of Washwater Chemistry and Delayed Start on Filter Ripening. Journal - American Water Works Association, 2004, 96, 97-110.	0.3	8
21	An Enhanced Backwashing Technique for Improved Filter Ripening. Journal - American Water Works Association, 2003, 95, 81-94.	0.3	15