
Muhammad Zaeem Noman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12043910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine, 2014, 211, 781-790.	8.5	1,601
2	Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia. American Journal of Physiology - Cell Physiology, 2015, 309, C569-C579.	4.6	316
3	Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17450-17455.	7.1	263
4	Epithelial-to-Mesenchymal Transition and Autophagy Induction in Breast Carcinoma Promote Escape from T-cell–Mediated Lysis. Cancer Research, 2013, 73, 2418-2427.	0.9	255
5	Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncolmmunology, 2016, 5, e1062968.	4.6	247
6	Blocking Hypoxia-Induced Autophagy in Tumors Restores Cytotoxic T-Cell Activity and Promotes Regression. Cancer Research, 2011, 71, 5976-5986.	0.9	223
7	The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncolmmunology, 2017, 6, e1263412.	4.6	193
8	Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9271-E9279.	7.1	181
9	The Cooperative Induction of Hypoxia-Inducible Factor-1α and STAT3 during Hypoxia Induced an Impairment of Tumor Susceptibility to CTL-Mediated Cell Lysis. Journal of Immunology, 2009, 182, 3510-3521.	0.8	175
10	Hypoxia-Inducible miR-210 Regulates the Susceptibility of Tumor Cells to Lysis by Cytotoxic T Cells. Cancer Research, 2012, 72, 4629-4641.	0.9	168
11	Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti–PD-1/PD-L1 immunotherapy. Science Advances, 2020, 6, eaax7881.	10.3	164
12	Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges. Cells, 2019, 8, 1083.	4.1	153
13	Hypoxia Promotes Tumor Growth in Linking Angiogenesis to Immune Escape. Frontiers in Immunology, 2012, 3, 21.	4.8	148
14	Renal Cell Carcinoma Programmed Death-ligand 1, a New Direct Target of Hypoxia-inducible Factor-2 Alpha, is Regulated by von Hippel–Lindau Gene Mutation Status. European Urology, 2016, 70, 623-632.	1.9	115
15	Tumor-Promoting Effects of Myeloid-Derived Suppressor Cells Are Potentiated by Hypoxia-Induced Expression of miR-210. Cancer Research, 2015, 75, 3771-3787.	0.9	112
16	Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress. Frontiers in Immunology, 2015, 6, 482.	4.8	103
17	Cutting Edge: Hypoxia-Induced Nanog Favors the Intratumoral Infiltration of Regulatory T Cells and Macrophages via Direct Regulation of TGF-Î21. Journal of Immunology, 2013, 191, 5802-5806.	0.8	97
18	ITPR1 Protects Renal Cancer Cells against Natural Killer Cells by Inducing Autophagy. Cancer Research, 2014, 74, 6820-6832.	0.9	97

#	Article	IF	CITATIONS
19	Microenvironmental Hypoxia Orchestrating the Cell Stroma Cross Talk, Tumor Progression and Antitumor Response. Critical Reviews in Immunology, 2011, 31, 357-377.	0.5	83
20	Impact of hypoxic tumor microenvironment and tumor cell plasticity on the expression of immune checkpoints. Cancer Letters, 2019, 458, 13-20.	7.2	83
21	The Selective Degradation of Synaptic Connexin 43 Protein by Hypoxia-induced Autophagy Impairs Natural Killer Cell-mediated Tumor Cell Killing. Journal of Biological Chemistry, 2015, 290, 23670-23679.	3.4	81
22	Autophagic degradation of GZMB/granzyme B. Autophagy, 2014, 10, 173-175.	9.1	73
23	Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene, 2021, 40, 4725-4735.	5.9	70
24	CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT. OncoImmunology, 2018, 7, e1345415.	4.6	63
25	Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: Consequences on susceptibility to cell-mediated cytotoxicity. Oncolmmunology, 2017, 6, e1271858.	4.6	61
26	The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells, 2019, 8, 613.	4.1	60
27	Hypoxia-Dependent Inhibition of Tumor Cell Susceptibility to CTL-Mediated Lysis Involves NANOG Induction in Target Cells. Journal of Immunology, 2011, 187, 4031-4039.	0.8	57
28	Hypoxia-induced autophagy. Autophagy, 2012, 8, 704-706.	9.1	56
29	Targeting hypoxia at the forefront of anticancer immune responses. Oncolmmunology, 2014, 3, e954463.	4.6	56
30	The multifaceted role of autophagy in tumor evasion from immune surveillance. Oncotarget, 2016, 7, 17591-17607.	1.8	53
31	Cutting Edge: NANOG Activates Autophagy under Hypoxic Stress by Binding to BNIP3L Promoter. Journal of Immunology, 2017, 198, 1423-1428.	0.8	36
32	miR-210 and hypoxic microvesicles: Two critical components of hypoxia involved in the regulation of killer cells function. Cancer Letters, 2016, 380, 257-262.	7.2	33
33	Intrinsic and Tumor Microenvironment-Induced Metabolism Adaptations of T Cells and Impact on Their Differentiation and Function. Frontiers in Immunology, 2016, 7, 114.	4.8	28
34	Firing up the cold tumors by targeting Vps34. Oncolmmunology, 2020, 9, 1809936.	4.6	24
35	Epithelial to Mesenchymal Transition Regulates Surface PD-L1 via CMTM6 and CMTM7 Induction in Breast Cancer. Cancers, 2021, 13, 1165.	3.7	24
36	Hijacker of the Antitumor Immune Response: Autophagy Is Showing Its Worst Facet. Frontiers in Oncology, 2016, 6, 246.	2.8	22

#	Article	IF	CITATIONS
37	Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Frontiers in Oncology, 2021, 11, 626309.	2.8	22
38	Driving Natural Killer cells toward the melanoma tumor battlefield: Autophagy as a valuable therapeutic target. Oncolmmunology, 2018, 7, e1452583.	4.6	18
39	Cytotoxic T cells – Stroma interactions. Bulletin Du Cancer, 2011, 98, E19-E24.	1.6	9
40	Emerging Role of Hypoxia-Induced Autophagy in Cancer Immunotherapy. , 2014, , 247-262.		1
41	The emerging impact of autophagy on the antitumor immune response. , 2020, , 109-117.		Ο
42	Hypoxia: A Formidable Saboteur of the Anti-tumor Response. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 115-142.	0.1	0