Daniel Prati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12039825/publications.pdf

Version: 2024-02-01

108	11,501	44	102
papers	citations	h-index	g-index
110	110	110	12898
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 2005, 144, 1-11.	2.0	875
2	Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 2019, 574, 671-674.	27.8	760
3	Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 2014, 4, 3514-3524.	1.9	697
4	Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic and Applied Ecology, 2010, 11, 473-485.	2.7	649
5	Invasive Plant Suppresses the Growth of Native Tree Seedlings by Disrupting Belowground Mutualisms. PLoS Biology, 2006, 4, e140.	5.6	621
6	Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 2015, 18, 834-843.	6.4	578
7	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	27.8	526
8	NOVEL WEAPONS: INVASIVE PLANT SUPPRESSES FUNGAL MUTUALISTS IN AMERICA BUT NOT IN ITS NATIVE EUROPE. Ecology, 2008, 89, 1043-1055.	3.2	456
9	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	27.8	404
10	A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic and Applied Ecology, 2012, 13, 207-220.	2.7	325
11	INTRASPECIFIC AGGREGATION ALTERS COMPETITIVE INTERACTIONS IN EXPERIMENTAL PLANT COMMUNITIES. Ecology, 2001, 82, 319-327.	3.2	295
12	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	7.1	243
13	Allelopathic inhibition of germination by <i>Alliaria petiolata</i> (Brassicaceae). American Journal of Botany, 2004, 91, 285-288.	1.7	237
14	Direct and productivityâ€mediated indirect effects of fertilization, mowing and grazing on grassland species richness. Journal of Ecology, 2012, 100, 1391-1399.	4.0	212
15	Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Molecular Ecology, 2005, 14, 1697-1706.	3.9	189
16	The impact of evenâ€aged and unevenâ€aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of Applied Ecology, 2018, 55, 267-278.	4.0	188
17	Multiple forest attributes underpin the supply of multiple ecosystem services. Nature Communications, 2018, 9, 4839.	12.8	182
18	Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic and Applied Ecology, 2013, 14, 126-136.	2.7	177

#	Article	IF	CITATIONS
19	RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). American Journal of Botany, 2000, 87, 1128-1137.	1.7	156
20	Reduced competitive ability in an invasive plant. Ecology Letters, 2004, 7, 346-353.	6.4	152
21	Intransitive competition is widespread in plant communities and maintains their species richness. Ecology Letters, 2015, 18, 790-798.	6.4	149
22	Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos, 2000, 90, 442-456.	2.7	138
23	Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nature Communications, 2016, 7, 10697.	12.8	125
24	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	4.0	117
25	Selection of preadapted populations allowed <i>Senecio inaequidens</i> to invade Central Europe. Diversity and Distributions, 2008, 14, 676-685.	4.1	103
26	High plant species richness indicates management-related disturbances rather than the conservation status of forests. Basic and Applied Ecology, 2013, 14, 496-505.	2.7	102
27	Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. Forest Ecology and Management, 2014, 329, 166-176.	3.2	95
28	The results of biodiversity–ecosystem functioning experiments are realistic. Nature Ecology and Evolution, 2020, 4, 1485-1494.	7.8	93
29	Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecology Letters, 2019, 22, 170-180.	6.4	92
30	Palatability and tolerance to simulated herbivory in native and introduced populations of <i>Alliaria petiolata</i> (Brassicaceae). American Journal of Botany, 2004, 91, 856-862.	1.7	83
31	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
32	Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biology and Biochemistry, 2017, 109, 214-226.	8.8	80
33	Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both?. Soil Biology and Biochemistry, 2014, 71, 21-30.	8.8	79
34	Allelopathic effects of three plant invaders on germination of native species: a field study. Biological Invasions, 2014, 16, 1035-1042.	2.4	78
35	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology, 2015, 96, 1492-1501.	3.2	75
36	Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytologist, 2017, 216, 1130-1139.	7.3	71

#	Article	IF	Citations
37	Effects of forest management on the diversity of deadwood-inhabiting fungi in Central European forests. Forest Ecology and Management, 2013, 304, 42-48.	3.2	68
38	Impact of invertebrate herbivory in grasslands depends on plant species diversity. Ecology, 2010, 91, 1639-1650.	3.2	67
39	Establishment success of 25 rare wetland species introduced into restored habitats is best predicted by ecological distance to source habitats. Biological Conservation, 2011, 144, 602-609.	4.1	64
40	Activated carbon may have undesired side effects for testing allelopathy in invasive plants. Basic and Applied Ecology, 2009, 10, 500-507.	2.7	62
41	Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology, 2019, 107, 2197-2210.	4.0	57
42	Evidence from the real world: ¹⁵ N natural abundances reveal enhanced nitrogen use at high plant diversity in Central European grasslands. Journal of Ecology, 2014, 102, 456-465.	4.0	55
43	Richness of Lichen Species, Especially of Threatened Ones, Is Promoted by Management Methods Furthering Stand Continuity. PLoS ONE, 2013, 8, e55461.	2.5	53
44	NIRS meets Ellenberg's indicator values: Prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics. Ecological Indicators, 2012, 14, 82-86.	6.3	49
45	Nutrient concentrations and fibre contents of plant community biomass reflect species richness patterns along a broad range of land-use intensities among agricultural grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 287-295.	2.7	48
46	Habitat use of large ungulates in northeastern Germany in relation to forest management. Forest Ecology and Management, 2011, 261, 288-296.	3.2	46
47	Dispersal and seed limitation affect diversity and productivity of montane grasslands. Oikos, 2008, 117, 1469-1478.	2.7	45
48	Will I stay or will I go? Plant speciesâ€specific response and tolerance to high landâ€use intensity in temperate grassland ecosystems. Journal of Vegetation Science, 2019, 30, 674-686.	2.2	45
49	Lichen Endozoochory by Snails. PLoS ONE, 2011, 6, e18770.	2.5	44
50	Up in the Tree – The Overlooked Richness of Bryophytes and Lichens in Tree Crowns. PLoS ONE, 2013, 8, e84913.	2.5	43
51	Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. Journal of Applied Ecology, 2019, 56, 168-179.	4.0	42
52	Fern and bryophyte endozoochory by slugs. Oecologia, 2013, 172, 817-822.	2.0	41
53	Effects of forest management on bryophyte species richness in Central European forests. Forest Ecology and Management, 2019, 432, 850-859.	3.2	41
54	Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?. Agriculture, Ecosystems and Environment, 2013, 177, 1-9.	5. 3	40

#	Article	IF	CITATIONS
55	Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nature Communications, 2021, 12, 4431.	12.8	40
56	The relative importance of immediate allelopathy and allelopathic legacy in invasive plant species. Basic and Applied Ecology, 2015, 16, 28-35.	2.7	36
57	Stochastic Dispersal Rather Than Deterministic Selection Explains the Spatio-Temporal Distribution of Soil Bacteria in a Temperate Grassland. Frontiers in Microbiology, 2020, 11, 1391.	3.5	36
58	Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on 13C natural abundances. Science of the Total Environment, 2016, 566-567, 215-222.	8.0	35
59	Land use intensity, rather than plant species richness, affects the leaching risk of multiple nutrients from permanent grasslands. Global Change Biology, 2018, 24, 2828-2840.	9.5	35
60	Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity. Oecologia, 2009, 159, 191-205.	2.0	33
61	Contribution of the soil seed bank to the restoration of temperate grasslands by mechanical sward disturbance. Restoration Ecology, 2018, 26, S114.	2.9	32
62	Eleven years' data of grassland management in Germany. Biodiversity Data Journal, 2019, 7, e36387.	0.8	32
63	Grazing response patterns indicate isolation of semiâ€natural European grasslands. Oikos, 2014, 123, 599-612.	2.7	31
64	Herbivore preference drives plant community composition. Ecology, 2015, 96, 2923-2934.	3.2	31
65	Direct and indirect effects of land use on bryophytes in grasslands. Science of the Total Environment, 2018, 644, 60-67.	8.0	31
66	Effects of forest management on bryophyte communities on deadwood. Nova Hedwigia, 2015, 100, 423-438.	0.4	30
67	Are Gastropods, Rather than Ants, Important Dispersers of Seeds of Myrmecochorous Forest Herbs?. American Naturalist, 2012, 179, 124-131.	2.1	29
68	Genetic variation in Sanguisorba minor after 6 years in situ selection under elevated CO2. Global Change Biology, 2004, 10, 1389-1401.	9.5	28
69	Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 2020, 22, 873-888.	3.8	27
70	Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Science Advances, 2021, 7, .	10.3	27
71	Contrasting effects of grassland management modes on species-abundance distributions of multiple groups. Agriculture, Ecosystems and Environment, 2017, 237, 143-153.	5.3	26
72	Impact of Land-Use Intensity and Productivity on Bryophyte Diversity in Agricultural Grasslands. PLoS ONE, 2012, 7, e51520.	2.5	25

#	Article	IF	CITATIONS
73	Temporal and small-scale spatial variation in grassland productivity, biomass quality, and nutrient limitation. Plant Ecology, 2016, 217, 843-856.	1.6	25
74	Effects of mowing, grazing and fertilization on soil seed banks in temperate grasslands in Central Europe. Agriculture, Ecosystems and Environment, 2018, 256, 211-217.	5.3	25
75	Lichen species richness is highest in non-intensively used grasslands promoting suitable microhabitats and low vascular plant competition. Biodiversity and Conservation, 2016, 25, 225-238.	2.6	24
76	Land use causes genetic differentiation of lifeâ€history traits in <i>Bromus hordeaceus</i> . Global Change Biology, 2013, 19, 892-899.	9.5	23
77	Does Land-Use Intensification Decrease Plant Phylogenetic Diversity in Local Grasslands?. PLoS ONE, 2014, 9, e103252.	2.5	23
78	Regional adaptation improves the performance of grassland plant communities. Basic and Applied Ecology, 2012, 13, 551-559.	2.7	22
79	Nutrient stoichiometry and land use rather than species richness determine plant functional diversity. Ecology and Evolution, 2018, 8, 601-616.	1.9	22
80	Water level fluctuations and dynamics of amphibious plants at Lake Constance: Long-term study and simulation. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 8, 179-196.	2.7	21
81	Evolutionary responses to land use in eight common grassland plants. Journal of Ecology, 2017, 105, 1290-1297.	4.0	21
82	Recovery of ecosystem functions after experimental disturbance in 73 grasslands differing in landâ€use intensity, plant species richness and community composition. Journal of Ecology, 2019, 107, 2635-2649.	4.0	20
83	Reciprocal Parasitization in Rhinanthus Serotinus: A Model System of Physiological Integration in Clonal Plants. Oikos, 1997, 78, 221.	2.7	19
84	Geographical and land-use effects on seed-mass variation in common grassland plants. Basic and Applied Ecology, 2012, 13, 395-404.	2.7	19
85	Restoration of plant diversity in permanent grassland by seeding: Assessing the limiting factors along landâ€use gradients. Journal of Applied Ecology, 2021, 58, 1681-1692.	4.0	19
86	Influence of experimental soil disturbances on the diversity of plants in agricultural grasslands. Journal of Plant Ecology, 2014, 7, 509-517.	2.3	18
87	Phenotypic plasticity is a negative, though weak, predictor of the commonness of 105 grassland species. Global Ecology and Biogeography, 2016, 25, 464-474.	5.8	17
88	Hemiparasite-density effects on grassland plant diversity, composition and biomass. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 32, 22-29.	2.7	17
89	Invasive plant species do not create more negative soil conditions for other plants than natives. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 87-95.	2.7	16
90	Is fern endozoochory widespread among fern-eating herbivores?. Plant Ecology, 2016, 217, 13-20.	1.6	16

#	Article	IF	CITATIONS
91	The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory. Oecologia, 2019, 190, 651-664.	2.0	16
92	The Evolution of Ecological Diversity in Acidobacteria. Frontiers in Microbiology, 2022, 13, 715637.	3.5	15
93	The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 185-197.	1.9	13
94	Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?. PLoS ONE, 2013, 8, e78134.	2.5	12
95	Gastropods slow down succession and maintain diversity in cryptogam communities. Ecology, 2016, 97, 2184-2191.	3.2	12
96	And the winner is ….! A test of simple predictors of plant species richness in agricultural grasslands. Ecological Indicators, 2018, 87, 296-301.	6.3	12
97	Genetic composition, genetic diversity and small-scale environmental variation matter for the experimental reintroduction of a rare plant. Journal of Plant Ecology, 2016, 9, 805-813.	2.3	11
98	No evidence for larger leaf trait plasticity in ecological generalists compared to specialists. Journal of Biogeography, 2017, 44, 511-521.	3.0	11
99	Exclusion of large herbivores affects understorey shrub vegetation more than herb vegetation across 147 forest sites in three German regions. PLoS ONE, 2019, 14, e0218741.	2.5	10
100	Direct and Indirect Effects of Management Intensity and Environmental Factors on the Functional Diversity of Lichens in Central European Forests. Microorganisms, 2021, 9, 463.	3.6	9
101	Present and historical landscape structure shapes current species richness in Central European grasslands. Landscape Ecology, 2022, 37, 745-762.	4.2	9
102	Enriching plant diversity in grasslands by large-scale experimental sward disturbance and seed addition along gradients of land-use intensity. Journal of Plant Ecology, 0, , rtw062.	2.3	8
103	Exploratories for Large-Scale and Long-Term Functional Biodiversity Research. , 2010, , 429-443.		7
104	To eat or not to eatâ€"relationship of lichen herbivory by snails with secondary compounds and field frequency of lichens. Journal of Plant Ecology, 2015, , rtv005.	2.3	6
105	Transgenerational effects of land use on offspring performance and growth in Trifolium repens. Oecologia, 2016, 180, 409-420.	2.0	6
106	Direct and plant community mediated effects of management intensity on annual nutrient leaching risk in temperate grasslands. Nutrient Cycling in Agroecosystems, 2022, 123, 83-104.	2.2	6
107	Landâ€use intensity and biodiversity effects on infiltration capacity and hydraulic conductivity of grassland soils in southern Germany. Ecohydrology, 2021, 14, e2301.	2.4	5
108	Comparing experimental and fieldâ€measured traits and their variability in Central European grassland species. Journal of Vegetation Science, 2020, 31, 561-570.	2.2	3