
Donald K Clifton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12036809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comprehensive Method To Quantify Adaptations by Male and Female Mice With Hot Flashes Induced by the Neurokinin B Receptor Agonist Senktide. Endocrinology, 2017, 158, 3259-3268.	2.8	15
2	\hat{I}° Agonists as a novel therapy for menopausal hot flashes. Menopause, 2015, 22, 1328-1334.	2.0	24
3	Redundancy in Kiss1 Expression Safeguards Reproduction in the Mouse. Endocrinology, 2013, 154, 2784-2794.	2.8	52
4	Role of Neurokinin B in the Control of Female Puberty and Its Modulation by Metabolic Status. Journal of Neuroscience, 2012, 32, 2388-2397.	3.6	150
5	Increased Neurokinin B (Tac2) Expression in the Mouse Arcuate Nucleus Is an Early Marker of Pubertal Onset with Differential Sensitivity to Sex Steroid-Negative Feedback than Kiss1. Endocrinology, 2012, 153, 4883-4893.	2.8	80
6	Molecular Properties of Kiss1 Neurons in the Arcuate Nucleus of the Mouse. Endocrinology, 2011, 152, 4298-4309.	2.8	113
7	Regulation of Kiss1 Expression by Sex Steroids in the Amygdala of the Rat and Mouse. Endocrinology, 2011, 152, 2020-2030.	2.8	136
8	Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E202-E210.	3.5	222
9	Neurokinin B and Dynorphin A in Kisspeptin Neurons of the Arcuate Nucleus Participate in Generation of Periodic Oscillation of Neural Activity Driving Pulsatile Gonadotropin-Releasing Hormone Secretion in the Goat. Journal of Neuroscience, 2010, 30, 3124-3132.	3.6	504
10	Interactions between neurotensin and GnRH neurons in the positive feedback control of GnRH/LH secretion in the mouse. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E80-E88.	3.5	20
11	Regulation of <i>Kiss1</i> and <i>Dynorphin</i> Gene Expression in the Murine Brain by Classical and Nonclassical Estrogen Receptor Pathways. Journal of Neuroscience, 2009, 29, 9390-9395.	3.6	169
12	Circadian Regulation of Kiss1 Neurons: Implications for Timing the Preovulatory Gonadotropin-Releasing Hormone/Luteinizing Hormone Surge. Endocrinology, 2009, 150, 3664-3671.	2.8	163
13	Sex differences in the regulation of <i>Kiss1/NKB</i> neurons in juvenile mice: implications for the timing of puberty. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1212-E1221.	3.5	113
14	Regulation of Gonadotropin-Releasing Hormone Secretion by Kisspeptin/Dynorphin/Neurokinin B Neurons in the Arcuate Nucleus of the Mouse. Journal of Neuroscience, 2009, 29, 11859-11866.	3.6	627
15	From KISS1 to kisspeptins: An historical perspective and suggested nomenclature. Peptides, 2009, 30, 4-9.	2.4	99
16	Kisspeptin Signaling in the Brain. Endocrine Reviews, 2009, 30, 713-743.	20.1	732
17	Neuroendocrinology of Reproduction. , 2009, , 3-33.		5
18	The Role of Kisspeptins and GPR54 in the Neuroendocrine Regulation of Reproduction. Annual Review of Physiology, 2008, 70, 213-238.	13.1	215

DONALD K CLIFTON

#	Article	IF	CITATIONS
19	Altered response to metabolic challenges in mice with genetically targeted deletions of galanin-like peptide. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E605-E612.	3.5	25
20	The Role of Kisspeptin–GPR54 Signaling in the Tonic Regulation and Surge Release of Gonadotropin-Releasing Hormone/Luteinizing Hormone. Journal of Neuroscience, 2007, 27, 12088-12095.	3.6	190
21	Emerging ideas about kisspeptin– GPR54 signaling in the neuroendocrine regulation of reproduction. Trends in Neurosciences, 2007, 30, 504-511.	8.6	189
22	The Kisspeptin Receptor GPR54 Is Required for Sexual Differentiation of the Brain and Behavior. Journal of Neuroscience, 2007, 27, 8826-8835.	3.6	173
23	Neuropeptide Signaling in the Integration of Metabolism and Reproduction. Neuroendocrinology, 2007, 86, 175-182.	2.5	145
24	Kiss1 Neurons in the Forebrain as Central Processors for Generating the Preovulatory Luteinizing Hormone Surge. Journal of Neuroscience, 2006, 26, 6687-6694.	3.6	519
25	Minireview: Kisspeptin Neurons as Central Processors in the Regulation of Gonadotropin-Releasing Hormone Secretion. Endocrinology, 2006, 147, 1154-1158.	2.8	328
26	Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction, 2006, 131, 623-630.	2.6	215
27	Regulation of Kiss1 Gene Expression in the Brain of the Female Mouse. Endocrinology, 2005, 146, 3686-3692.	2.8	912
28	A KiSS to remember. Trends in Endocrinology and Metabolism, 2005, 16, 249-250.	7.1	17
29	Differential Regulation of KiSS-1 mRNA Expression by Sex Steroids in the Brain of the Male Mouse. Endocrinology, 2005, 146, 2976-2984.	2.8	579
30	Activation of Gonadotropin-Releasing Hormone Neurons by Kisspeptin as a Neuroendocrine Switch for the Onset of Puberty. Journal of Neuroscience, 2005, 25, 11349-11356.	3.6	873
31	Galanin-Like Peptide as a Possible Link between Metabolism and Reproduction in the Macaque. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1760-1766.	3.6	52
32	Kisspeptin Activation of Gonadotropin Releasing Hormone Neurons and Regulation of KiSS-1 mRNA in the Male Rat. Neuroendocrinology, 2004, 80, 264-272.	2.5	809
33	A Role for Galanin-Like Peptide in the Integration of Feeding, Body Weight Regulation, and Reproduction in the Mouse. Endocrinology, 2003, 144, 813-822.	2.8	123
34	Activation of the Sympathetic Nervous System by Galanin-Like Peptide—A Possible Link between Leptin and Metabolism. Endocrinology, 2003, 144, 4709-4717.	2.8	72
35	Differential Patterns of Fos Induction in the Hypothalamus of the Rat Following Central Injections of Galanin-Like Peptide and Galanin. Endocrinology, 2003, 144, 1143-1146.	2.8	55
36	Serotonergic Neurons Are Targets for Leptin in the Monkey1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 422-426.	3.6	60

DONALD K CLIFTON

#	Article	IF	CITATIONS
37	Distribution and Regulation of Galanin-Like Peptide (GALP) in the Hypothalamus of the Mouse. Endocrinology, 2001, 142, 5140-5144.	2.8	46
38	Galanin-Like Peptide (GALP) Is a Target for Regulation by Leptin in the Hypothalamus of the Rat. Endocrinology, 2000, 141, 2703-2706.	2.8	126
39	Galanin-Like Peptide (GALP) Is a Target for Regulation by Leptin in the Hypothalamus of the Rat. Endocrinology, 2000, 141, 2703-2706.	2.8	74
40	Leptin's Actions on the Reproductive Axis: Perspectives and Mechanisms. Biology of Reproduction, 1999, 60, 216-222.	2.7	455
41	Galanin: Analysis of Its Coexpression in Gonadotropin-Releasing Hormone and Growth Hormone-Releasing Hormone Neurons. Annals of the New York Academy of Sciences, 1998, 863, 221-235.	3.8	30
42	The Stimulatory Effect of Leptin on the Neuroendocrine Reproductive Axis of the Monkey ¹ . Endocrinology, 1998, 139, 4652-4662.	2.8	281
43	Regulation of Hypothalamic Proopiomelanocortin mRNA by Leptin in ob/ob Mice. Endocrinology, 1997, 138, 5063-5066.	2.8	387
44	Leptin Is a Metabolic Gate for the Onset of Puberty in the Female Rat. Endocrinology, 1997, 138, 855-858.	2.8	467
45	Proopiomelanocortin Neurons Are Direct Targets for Leptin in the Hypothalamus. Endocrinology, 1997, 138, 4489-4492.	2.8	655
46	Proopiomelanocortin Neurons Are Direct Targets for Leptin in the Hypothalamus. Endocrinology, 1997, 138, 4489-4492.	2.8	224
47	Inhibition of Steroidâ€Induced Galanin mRNA Expression in GnRH Neurons by Specific NMDAâ€Receptor Blockade. Journal of Neuroendocrinology, 1996, 8, 179-184.	2.6	18
48	Induction of Galanin mRNA in GnRH Neurons by Estradiol and its Facilitation by Progesterone. Journal of Neuroendocrinology, 1996, 8, 185-191.	2.6	43
49	Diurnal Rhythm in Proopiomelanocortin mRNA in the Arcuate Nucleus of the Male Rat. Journal of Neuroendocrinology, 1994, 6, 603-608.	2.6	40
50	The induction of premature luteolysis in normal women—follicular phase luteinizing hormone secretion and corpus luteum function in the subsequent cycle. American Journal of Obstetrics and Gynecology, 1991, 164, 989-994.	1.3	4
51	Prolactin Secretion and Corpus Luteum Function in Women with Luteal Phase Deficiency*. Journal of Clinical Endocrinology and Metabolism, 1991, 72, 986-992.	3.6	9
52	Semiquantitative Analysis of Cellular Somatostatin mRNA Levels by in Situ Hybridization Histochemistry. Methods in Neurosciences, 1991, 5, 137-158.	0.5	43
53	Pro-Opiomelanocortin Messenger RNA in Hypothalamic Neurons Is Increased by Testosterone through Aromatization to Estradiol. Neuroendocrinology, 1990, 52, 581-588.	2.5	75
54	Luteal Phase Deficiency: Abnormal Gonadotropin and Progesterone Secretion Patterns*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 813-820.	3.6	86

#	Article	IF	CITATIONS
55	Testosterone Modulates the Differential Release of Luteinizing Hormone and Follicle-Stimulating Hormone that Occurs in Response to Changing Gonadotropin-Releasing Hormone Pulse Frequency in the Male Monkey, Macaca Fascicularis1. Biology of Reproduction, 1988, 38, 156-162.	2.7	17
56	The effects of inducing a follicular phase gonadotropin secretory pattern in normal women during the luteal phase**Supported by National Institutes of Health grants R01 HD 18967-02 and P50 HD 12629-07; by University of Washington Clinical Research Center National Institutes of Health grant RR-37 Fertility and Sterility, 1987, 47, 45-53.	1.0	14
57	Gonadotropin-releasing hormone-induced changes in testosterone secretion in normal women**Supported by the National Institutes of Health grants R01 HD 18967-02 (M.R.S.), P50 HD 12629-07 (W.J.B.), RO1 HD 12625-08 (R.A.S.), Clinical Research Center grant RR-37, and by the Veterans Administration Fertility and Sterility. 1987. 48. 423-427.	1.0	2
58	Opioid Regulation of Luteinizing Hormone Secretion in the Male Rat1. Biology of Reproduction, 1986, 35, 17-26.	2.7	25
59	Reduced Pulsatile Luteinizing Hormone and Testosterone Secretion with Aging in the Male Rat 1. Biology of Reproduction, 1984, 31, 251-258.	2.7	62
60	Progesterone Modulation of Pulsatile Luteinizing Hormone Secretion in Normal Women*. Journal of Clinical Endocrinology and Metabolism, 1984, 58, 378-383.	3.6	305
61	Cycle Detection: A Technique for Estimating the Frequency and Amplitude of Episodic Fluctuations inBlood Hormone and Substrate Concentrations*. Endocrinology, 1983, 112, 1057-1064.	2.8	173