
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12036446/publications.pdf Version: 2024-02-01

Ελήρι δλατοιοσιμ

#	Article	lF	CITATIONS
1	STAMP2 suppresses autophagy in prostate cancer cells by modulating the integrated stress response pathway American Journal of Cancer Research, 2022, 12, 327-336.	1.4	0
2	STAMP2 Expression Mediated by Cytokines Attenuates Their Growth-Limiting Effects in Prostate Cancer Cells. Cancers, 2021, 13, 1579.	3.7	8
3	Targeting the Unfolded Protein Response in Hormone-Regulated Cancers. Trends in Cancer, 2020, 6, 160-171.	7.4	35
4	Regulation of the unfolded protein response through ATF4 and FAM129A in prostate cancer. Oncogene, 2019, 38, 6301-6318.	5.9	51
5	IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nature Communications, 2019, 10, 323.	12.8	158
6	Inflammation and ER stress differentially regulate STAMP2 expression and localization in adipocytes. Metabolism: Clinical and Experimental, 2019, 93, 75-85.	3.4	9
7	Cachexia does not induce loss of myonuclei or muscle fibres during xenografted prostate cancer in mice. Acta Physiologica, 2019, 225, e13204.	3.8	13
8	Androgen Receptor (AR). , 2018, , 312-319.		0
9	Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Reports, 2017, 19, 2045-2059.	6.4	99
10	Role of PLZF as a tumor suppressor in prostate cancer. Oncotarget, 2017, 8, 71317-71324.	1.8	31
11	STAMP2 is required for human adipose-derived stem cell differentiation and adipocyte-facilitated prostate cancer growth <i>in vivo</i> . Oncotarget, 2017, 8, 91817-91827.	1.8	7
12	Divergent Binding and Transactivation by Two Related Steroid Receptors at the Same Response Element. Journal of Biological Chemistry, 2016, 291, 11899-11910.	3.4	7
13	STAMPing at the crossroads of normal physiology and disease states. Molecular and Cellular Endocrinology, 2016, 425, 26-36.	3.2	18
14	Prostate cancer and the unfolded protein response. Oncotarget, 2016, 7, 54051-54066.	1.8	55
15	Androgen Receptor (AR). , 2016, , 1-8.		0
16	Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Molecular Medicine, 2015, 7, 788-801.	6.9	87
17	<scp>STAMP</scp> 2 increases oxidative stress and is critical forÂprostate cancer. EMBO Molecular Medicine, 2015, 7, 315-331.	6.9	52
18	Distinctly Different Dynamics and Kinetics of Two Steroid Receptors at the Same Response Elements in Living Cells. PLoS ONE, 2014, 9, e105204.	2.5	11

FAHRI SAATCIOGLU

#	Article	IF	CITATIONS
19	Methods to Assess Lipid Accumulation in Cancer Cells. Methods in Enzymology, 2014, 542, 407-423.	1.0	6
20	Regulation of gene expression by yoga, meditation and related practices: A review of recent studies. Asian Journal of Psychiatry, 2013, 6, 74-77.	2.0	48
21	Molecular circuit involving KLK4 integrates androgen and mTOR signaling in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2572-81.	7.1	56
22	Rapid Gene Expression Changes in Peripheral Blood Lymphocytes upon Practice of a Comprehensive Yoga Program. PLoS ONE, 2013, 8, e61910.	2.5	82
23	Differential Expression and Function of Stamp Family Proteins in Adipocyte Differentiation. PLoS ONE, 2013, 8, e68249.	2.5	13
24	TCTP Is an Androgen-Regulated Gene Implicated in Prostate Cancer. PLoS ONE, 2013, 8, e69398.	2.5	23
25	TCTP is Androgenâ€Regulated and Overâ€Expressed in Prostate Cancer. FASEB Journal, 2013, 27, 602.3.	0.5	0
26	The effects of short-term genistein intervention on prostate biomarker expression in patients with localised prostate cancer before radical prostatectomy. British Journal of Nutrition, 2012, 108, 2138-2147.	2.3	43
27	Stamp2 Controls Macrophage Inflammation through Nicotinamide Adenine Dinucleotide Phosphate Homeostasis and Protects against Atherosclerosis. Cell Metabolism, 2012, 16, 81-89.	16.2	36
28	Alpha-2-Macroglobulin Receptor (A2MR). , 2012, , 100-100.		0
29	Efficacy and Safety of Short-Term Genistein Intervention in Patients with Localized Prostate Cancer Prior to Radical Prostatectomy: A Randomized, Placebo-Controlled, Double-Blind Phase 2 Clinical Trial. Nutrition and Cancer, 2011, 63, 889-898.	2.0	136
30	Regulation of Apoptosis by Androgens in Prostate Cancer Cells. Methods in Molecular Biology, 2011, 776, 349-360.	0.9	4
31	Methods to Study Dynamic Interaction of Androgen Receptor with Chromatin in Living Cells. Methods in Molecular Biology, 2011, 776, 131-145.	0.9	1
32	STAMP1 Is Both a Proliferative and an Antiapoptotic Factor in Prostate Cancer. Cancer Research, 2010, 70, 5818-5828.	0.9	48
33	STAMPs at the Crossroads of Cancer and Nutrition. Nutrition and Cancer, 2010, 62, 891-895.	2.0	11
34	PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells. Cellular Oncology, 2010, 32, 11-27.	1.9	44
35	Dual specificity phosphatases in prostate cancer. Molecular and Cellular Endocrinology, 2009, 309, 1-7.	3.2	22
36	Human PARMâ€1 is a novel mucinâ€like, androgenâ€regulated gene exhibiting proliferative effects in prostate cancer cells. International Journal of Cancer, 2008, 122, 1229-1235.	5.1	24

#	Article	IF	CITATIONS
37	Inhibition of Apoptosis in Prostate Cancer Cells by Androgens Is Mediated through Downregulation of c-Jun N-terminal Kinase Activation. Neoplasia, 2008, 10, 418-428.	5.3	35
38	The Mitogen-Activated Protein Kinase Phosphatase <i>Vaccinia</i> H1–Related Protein Inhibits Apoptosis in Prostate Cancer Cells and Is Overexpressed in Prostate Cancer. Cancer Research, 2008, 68, 9255-9264.	0.9	51
39	Genistein differentially modulates androgen-responsive gene expression and activates JNK in LNCaP cells. Oncology Reports, 2008, , .	2.6	7
40	Genistein differentially modulates androgen-responsive gene expression and activates JNK in LNCaP cells. Oncology Reports, 2008, 19, 1231-5.	2.6	14
41	Kallikrein 4 Is a Proliferative Factor that Is Overexpressed in Prostate Cancer. Cancer Research, 2007, 67, 5221-5230.	0.9	82
42	Coordinated Regulation of Nutrient and Inflammatory Responses by STAMP2 Is Essential for Metabolic Homeostasis. Cell, 2007, 129, 537-548.	28.9	188
43	Ligand-Specific Dynamics of the Androgen Receptor at Its Response Element in Living Cells. Molecular and Cellular Biology, 2007, 27, 1823-1843.	2.3	126
44	Androgen signaling and its interactions with other signaling pathways in prostate cancer. BioEssays, 2007, 29, 1227-1238.	2.5	96
45	Wellness through a comprehensive Yogic breathing program – A controlled pilot trial. BMC Complementary and Alternative Medicine, 2007, 7, 43.	3.7	106
46	Kallikrein 4 is expressed in malignant mesothelioma—Further evidence for the histogenetic link between mesothelial and epithelial cells. Diagnostic Cytopathology, 2007, 35, 80-84.	1.0	7
47	Molecular Mechanisms of Apoptosis in Prostate Cancer. Critical Reviews in Oncogenesis, 2007, 13, 1-38.	0.4	11
48	Analysis of NKX3.1 expression in prostate cancer tissues and correlation with clinicopathologic features. Pathology Research and Practice, 2006, 202, 93-98.	2.3	30
49	Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer. Oncogene, 2005, 24, 4934-4945.	5.9	117
50	Histone deacetylase inhibitors differentially mediate apoptosis in prostate cancer cells. Prostate, 2005, 62, 299-306.	2.3	57
51	Kallikrein 4 Expression Is Up-Regulated in Epithelial Ovarian Carcinoma Cells in Effusions. American Journal of Clinical Pathology, 2005, 123, 360-368.	0.7	22
52	The loss of NKX3.1 expression in testicular-and prostate-cancers is not caused by promoter hypermethylation. Molecular Cancer, 2005, 4, 8.	19.2	8
53	Kallikrein 4 is a Predominantly Nuclear Protein and Is Overexpressed in Prostate Cancer. Cancer Research, 2004, 64, 2365-2370.	0.9	101
54	Kallikrein 4 is associated with paclitaxel resistance in ovarian cancer. Gynecologic Oncology, 2004, 94, 80-85.	1.4	44

#	Article	IF	CITATIONS
55	ANALYSIS OF ANDROGEN REGULATED HOMEOBOX GENE NKX3.1 DURING PROSTATE CARCINOGENESIS. Journal of Urology, 2004, 172, 1134-1139.	0.4	40
56	NKX3.1 Expression Is Lost in Testicular Germ Cell Tumors. American Journal of Pathology, 2003, 163, 2149-2154.	3.8	28
57	Corepressor SMRT Functions as a Coactivator for Thyroid Hormone Receptor T3Rα from a Negative Hormone Response Element. Journal of Biological Chemistry, 2002, 277, 49517-49522.	3.4	43
58	Cross-Talk between Bone Morphogenic Proteins and Estrogen Receptor Signaling. Endocrinology, 2002, 143, 2635-2642.	2.8	91
59	Molecular Cloning and Characterization of STAMP1, a Highly Prostate-specific Six Transmembrane Protein that Is Overexpressed in Prostate Cancer. Journal of Biological Chemistry, 2002, 277, 36689-36696.	3.4	80
60	C-Jun N-terminal kinase is required for phorbol ester- and thapsigargin-induced apoptosis in the androgen responsive prostate cancer cell line LNCaP. Oncogene, 2002, 21, 1017-1027.	5.9	55
61	Cross-Talk between Signal Transducer and Activator of Transcription 3 and Androgen Receptor Signaling in Prostate Carcinoma Cells. Biochemical and Biophysical Research Communications, 2001, 283, 179-187.	2.1	69
62	Ceramide-induced cell death in the prostate cancer cell line LNCaP has both necrotic and apoptotic features. Prostate, 2001, 46, 289-297.	2.3	27
63	DNA Binding-independent Transcriptional Activation by the Androgen Receptor through Triggering of Coactivators. Journal of Biological Chemistry, 2001, 276, 31030-31036.	3.4	18
64	Cross-talk between Transforming Growth Factor-β and Estrogen Receptor Signaling through Smad3. Journal of Biological Chemistry, 2001, 276, 42908-42914.	3.4	226
65	Disrupted Amino- and Carboxyl-Terminal Interactions of the Androgen Receptor Are Linked to Androgen Insensitivity. Molecular Endocrinology, 2001, 15, 923-935.	3.7	105
66	Distinctly Different Gene Structure of KLK4/KLK-L1/Prostase/ARM1 Compared with Other Members of the Kallikrein Family: Intracellular Localization, Alternative cDNA Forms, and Regulation by Multiple Hormones. DNA and Cell Biology, 2001, 20, 435-445.	1.9	42
67	Efficient DNA-mediated gene transfer into prostate cancer cell line LNCaP. , 2000, 43, 111-117.		12
68	An Efficient Procedure for Cloning Hormone-Responsive Genes from a Specific Tissue. DNA and Cell Biology, 2000, 19, 499-506.	1.9	14
69	Mutational Analysis of the Androgen Receptor AF-2 (Activation Function 2) Core Domain Reveals Functional and Mechanistic Differences of Conserved Residues Compared with Other Nuclear Receptors. Molecular Endocrinology, 2000, 14, 1603-1617.	3.7	41
70	Protein Inhibitor of Activated STAT3 Regulates Androgen Receptor Signaling in Prostate Carcinoma Cells. Biochemical and Biophysical Research Communications, 2000, 278, 9-13.	2.1	74
71	Full-length cDNA sequence and genomic organization of human NKX3A — alternative forms and regulation by both androgens and estrogens. Gene, 2000, 260, 25-36.	2.2	46
72	Cross-talk between signal transducer and activator of transcription 3 and estrogen receptor signaling. FEBS Letters, 2000, 486, 143-148.	2.8	79

#	Article	IF	CITATIONS
73	The N-Terminal Domain of Thyroid Hormone Receptor-α Is Required for Its Biological Activities. DNA and Cell Biology, 2000, 19, 389-399.	1.9	3
74	Mutational Analysis of the Androgen Receptor AF-2 (Activation Function 2) Core Domain Reveals Functional and Mechanistic Differences of Conserved Residues Compared with Other Nuclear Receptors. Molecular Endocrinology, 2000, 14, 1603-1617.	3.7	12
75	CREB Binding Protein Is a Coactivator for the Androgen Receptor and Mediates Cross-talk with AP-1. Journal of Biological Chemistry, 1998, 273, 31853-31859.	3.4	199
76	Androgenic Induction of Prostate-specific Antigen Gene Is Repressed by Protein-Protein Interaction between the Androgen Receptor and AP-1/c-Jun in the Human Prostate Cancer Cell Line LNCaP. Journal of Biological Chemistry, 1997, 272, 17485-17494.	3.4	184
77	A Unique Thyroid Hormone Response Element in the Human Immunodeficiency Virus Type 1 Long Terminal Repeat That Overlaps the Sp1 Binding Sites. Journal of Biological Chemistry, 1995, 270, 31059-31064.	3.4	25
78	A novel cis element mediating ligand-independent activation by c-ErbA: Implications for hormonal regulation. Cell, 1993, 75, 1095-1105.	28.9	120