Li-Zhu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12035855/publications.pdf

Version: 2024-02-01

423 papers

36,157 citations

92 h-index 172 g-index

456 all docs

456 docs citations

456 times ranked

29526 citing authors

#	Article	IF	Citations
1	Alkaliâ€Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Advanced Materials, 2017, 29, 1605148.	11.1	1,616
2	BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine. Journal of the American Chemical Society, 2012, 134, 18928-18931.	6.6	820
3	Tuning Oxygen Vacancies in Ultrathin TiO ₂ Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. Advanced Materials, 2019, 31, e1806482.	11.1	732
4	Design strategies of fluorescent probes for selective detection among biothiols. Chemical Society Reviews, 2015, 44, 6143-6160.	18.7	721
5	Ni ₃ FeN Nanoparticles Derived from Ultrathin NiFeâ€Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. Advanced Energy Materials, 2016, 6, 1502585.	10.2	668
6	Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€Silicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Advanced Materials, 2016, 28, 1668-1674.	11.1	663
7	Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Advanced Materials, 2016, 28, 9454-9477.	11.1	622
8	Defectâ€Rich Ultrathin ZnAlâ€Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO ₂ to CO with Water. Advanced Materials, 2015, 27, 7824-7831.	11.1	608
9	Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 3344.	5. 2	601
10	Ultrafine NiO Nanosheets Stabilized by TiO ₂ from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society, 2016, 138, 6517-6524.	6.6	597
11	Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation. Advanced Materials, 2017, 29, 1703828.	11.1	524
12	NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2017, 7, 1700467.	10.2	422
13	Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C ₃ N ₄ for Photocatalytic O ₂ Evolution. ACS Catalysis, 2015, 5, 6973-6979.	5.5	414
14	Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer. Chemical Reviews, 2015, 115, 7502-7542.	23.0	413
15	Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production. Advanced Energy Materials, 2016, 6, 1501974.	10.2	389
16	Grapheneâ€Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie - International Edition, 2014, 53, 250-254.	7.2	384
17	Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH ₃ Production Rates?. Advanced Science, 2019, 6, 1802109.	5.6	379
18	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	18.7	350

#	Article	IF	CITATIONS
19	Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 3954-3957.	6.6	335
20	Semiconducting quantum dots forÂartificial photosynthesis. Nature Reviews Chemistry, 2018, 2, 160-173.	13.8	334
21	External Oxidant-Free Oxidative Cross-Coupling: A Photoredox Cobalt-Catalyzed Aromatic C–H Thiolation for Constructing C–S Bonds. Journal of the American Chemical Society, 2015, 137, 9273-9280.	6.6	323
22	Semiconductor Quantum Dots: An Emerging Candidate for CO ₂ Photoreduction. Advanced Materials, 2019, 31, e1900709.	11.1	316
23	A Highly Efficient Photocatalytic System for Hydrogen Production by a Robust Hydrogenase Mimic in an Aqueous Solution. Angewandte Chemie - International Edition, 2011, 50, 3193-3197.	7.2	315
24	Selfâ€Assembled Au/CdSe Nanocrystal Clusters for Plasmonâ€Mediated Photocatalytic Hydrogen Evolution. Advanced Materials, 2017, 29, 1700803.	11.1	311
25	Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons. Advanced Materials, 2018, 30, 1704663.	11.1	309
26	Eosinâ€Y as a Direct Hydrogenâ€Atom Transfer Photocatalyst for the Functionalization of Câ^'H Bonds. Angewandte Chemie - International Edition, 2018, 57, 8514-8518.	7.2	304
27	Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nature Communications, 2021, 12, 1354.	5.8	286
28	From Solar Energy to Fuels: Recent Advances in Lightâ€Driven C ₁ Chemistry. Angewandte Chemie - International Edition, 2019, 58, 17528-17551.	7.2	285
29	Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. Journal of the American Chemical Society, 2019, 141, 5045-5050.	6.6	285
30	Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C–H Amination and Hydroxylation. Journal of the American Chemical Society, 2016, 138, 10080-10083.	6.6	280
31	Subâ€3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation. Advanced Energy Materials, 2018, 8, 1703585.	10.2	274
32	Recent advances in visible-light-driven organic reactions. National Science Review, 2017, 4, 359-380.	4.6	258
33	Reactivity and Mechanistic Insight into Visibleâ€Lightâ€Induced Aerobic Crossâ€Dehydrogenative Coupling Reaction by Organophotocatalysts. Chemistry - A European Journal, 2012, 18, 620-627.	1.7	254
34	CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241.	10.2	253
35	A Cascade Cross-Coupling Hydrogen Evolution Reaction by Visible Light Catalysis. Journal of the American Chemical Society, 2013, 135, 19052-19055.	6.6	250
36	Enhancement of the Efficiency of Photocatalytic Reduction of Protons to Hydrogen via Molecular Assembly. Accounts of Chemical Research, 2014, 47, 2177-2185.	7.6	237

#	Article	IF	Citations
37	Photocatalytic Hydrogen Production from Hantzsch 1,4-Dihydropyridines by Platinum(II) Terpyridyl Complexes in Homogeneous Solution. Journal of the American Chemical Society, 2004, 126, 3440-3441.	6.6	231
38	Dynamic Covalent Bond Based on Reversible Photo [4 + 4] Cycloaddition of Anthracene for Construction of Double-Dynamic Polymers. Organic Letters, 2013, 15, 6148-6151.	2.4	221
39	Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings. Accounts of Chemical Research, 2018, 51, 2512-2523.	7.6	216
40	Visible‣ightâ€Promoted Asymmetric Crossâ€Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3694-3698.	7.2	208
41	Mechanistic Insights into the Interfaceâ€Directed Transformation of Thiols into Disulfides and Molecular Hydrogen by Visibleâ€Light Irradiation of Quantum Dots. Angewandte Chemie - International Edition, 2014, 53, 2085-2089.	7.2	205
42	Photoresponsive Hydrogenâ∈Bonded Supramolecular Polymers Based on a Stiff Stilbene Unit. Angewandte Chemie - International Edition, 2013, 52, 9738-9742.	7.2	204
43	Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Research, 2018, 11, 3462-3468.	5.8	199
44	A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione. Chemical Communications, 2013, 49, 1294.	2.2	197
45	Supramolecular Systems as Microreactors:  Control of Product Selectivity in Organic Phototransformation. Accounts of Chemical Research, 2003, 36, 39-47.	7.6	195
46	Long-Lived Emission from Platinum(II) Terpyridyl Acetylide Complexes. Inorganic Chemistry, 2002, 41, 5653-5655.	1.9	191
47	Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell. Advanced Materials, 2017, 29, 1605308.	11.1	189
48	Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nature Communications, 2018, 9, 4009.	5.8	179
49	Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. CheM, 2019, 5, 2605-2616.	5.8	179
50	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie - International Edition, 2016, 55, 4215-4219.	7.2	176
51	Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution. ACS Catalysis, 2012, 2, 407-416.	5.5	175
52	Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. Green Chemistry, 2014, 16, 1082-1086.	4.6	175
53	Efficient Photocatalytic Nitrogen Fixation over Cu <i>^ĵ</i> ⁺ â€Modified Defective ZnAlâ€Layered Double Hydroxide Nanosheets. Advanced Energy Materials, 2020, 10, 1901973.	10.2	173
54	Effect of Nitrogen Doping Level on the Performance of Nâ€Doped Carbon Quantum Dot/TiO ₂ Composites for Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4650-4656.	3.6	171

#	Article	IF	CITATIONS
55	Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. Journal of Materials Chemistry A, 2013, 1, 4552.	5.2	166
56	Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nature Communications, 2013, 4, 2695.	5.8	159
57	3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries' cathodes. Nano Energy, 2017, 40, 382-389.	8.2	153
58	Lightâ€Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes. Angewandte Chemie - International Edition, 2016, 55, 2759-2763.	7. 2	151
59	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. Angewandte Chemie - International Edition, 2017, 56, 3020-3024.	7.2	151
60	Graphdiyne: A Promising Catalyst–Support To Stabilize Cobalt Nanoparticles for Oxygen Evolution. ACS Catalysis, 2017, 7, 5209-5213.	5.5	150
61	Visible Light Catalysis Assisted Site-Specific Functionalization of Amino Acid Derivatives by C–H Bond Activation without Oxidant: Cross-Coupling Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 2391-2396.	5.5	148
62	Cross-Coupling Hydrogen Evolution Reaction in Homogeneous Solution without Noble Metals. Organic Letters, 2014, 16, 1988-1991.	2.4	147
63	Artificial Lightâ€Harvesting System Based on Multifunctional Surfaceâ€Crossâ€Linked Micelles. Angewandte Chemie - International Edition, 2012, 51, 2088-2092.	7.2	146
64	Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 4789-4796.	6.6	146
65	Exceptional Poly(acrylic acid)â€Based Artificial [FeFe]â€Hydrogenases for Photocatalytic H ₂ Production in Water. Angewandte Chemie - International Edition, 2013, 52, 8134-8138.	7.2	145
66	A Highly Efficient and Selective Aerobic Crossâ€Dehydrogenativeâ€Coupling Reaction Photocatalyzed by a Platinum(II) Terpyridyl Complex. Chemistry - A European Journal, 2013, 19, 6443-6450.	1.7	144
67	Magnetically recyclable nanocatalysts (MRNCs): a versatile integration of high catalytic activity and facile recovery. Nanoscale, 2012, 4, 6244.	2.8	143
68	An Exceptional Artificial Photocatalyst, Ni _h â€CdSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution. Advanced Materials, 2013, 25, 6613-6618.	11.1	140
69	Coâ€Based Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for the Photothermal Production of Light Olefins. Advanced Materials, 2018, 30, e1800527.	11.1	139
70	Photooxidation of Olefins under Oxygen in Platinum(II) Complex-Loaded Mesoporous Molecular Sieves. Journal of the American Chemical Society, 2006, 128, 14685-14690.	6.6	131
71	Cobalt-Catalyzed Cross-Dehydrogenative Coupling Reaction in Water by Visible Light. Organic Letters, 2015, 17, 884-887.	2.4	129
72	Highly Selective Colorimetric and Electrochemical Pb2+Detection Based on TTF-Ï€-Pyridine Derivatives. Journal of Organic Chemistry, 2005, 70, 9727-9734.	1.7	128

#	Article	IF	CITATIONS
73	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visibleâ€Light Catalysis. Angewandte Chemie - International Edition, 2017, 56, 15407-15410.	7.2	128
74	Ni ³⁺ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors. Nanoscale, 2015, 7, 7168-7173.	2.8	127
75	Semiconductor nanocrystals for small molecule activation <i>via</i> artificial photosynthesis. Chemical Society Reviews, 2020, 49, 9028-9056.	18.7	127
76	A Luminescent Chemosensor with Specific Response for Mg2+. Inorganic Chemistry, 2004, 43, 5195-5197.	1.9	126
77	Photocatalytic Hydrogen Evolution from Rhenium(I) Complexes to [FeFe] Hydrogenase Mimics in Aqueous SDS Micellar Systems: A Biomimetic Pathway. Langmuir, 2010, 26, 9766-9771.	1.6	124
78	Visible-Light-Driven Difluoroacetamidation of Unactive Arenes and Heteroarenes by Direct C–H Functionalization at Room Temperature. Organic Letters, 2014, 16, 5842-5845.	2.4	121
79	A robust "artificial catalyst―in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy and Environmental Science, 2013, 6, 465-469.	15.6	120
80	Visible-light-mediated aerobic selenation of (hetero)arenes with diselenides. Green Chemistry, 2017, 19, 5559-5563.	4.6	120
81	BowtieArene: A Dual Macrocycle Exhibiting Stimuliâ€Responsive Fluorescence. Angewandte Chemie - International Edition, 2020, 59, 10059-10065.	7.2	120
82	Visible-light induced oxidant-free oxidative cross-coupling for constructing allylic sulfones from olefins and sulfinic acids. Chemical Communications, 2016, 52, 10407-10410.	2.2	119
83	Water-dispersible nanospheres of hydrogen-bonded supramolecular polymers and their application for mimicking light-harvesting systems. Chemical Communications, 2014, 50, 1334-1337.	2.2	118
84	Interface-directed assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy and Environmental Science, 2013, 6, 2597.	15.6	115
85	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy and Environmental Science, 2020, 13, 1326-1346.	15.6	115
86	Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light. Advanced Materials, 2014, 26, 5613-5618.	11.1	112
87	Threeâ€Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 192-197.	7.2	106
88	Supramolecular Polymeric Fluorescent Nanoparticles Based on Quadruple Hydrogen Bonds. Advanced Functional Materials, 2016, 26, 5483-5489.	7.8	105
89	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie - International Edition, 2016, 55, 2167-2170.	7.2	105
90	An Oxidant-Free Strategy for Indole Synthesis via Intramolecular C–C Bond Construction under Visible Light Irradiation: Cross-Coupling Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 4635-4639.	5.5	102

#	Article	IF	CITATIONS
91	Switching between Ligand-to-Ligand Charge-Transfer, Intraligand Charge-Transfer, and Metal-to-Ligand Charge-Transfer Excited States in Platinum(II) Terpyridyl Acetylide Complexes Induced by pH Change and Metal Ions. Chemistry - A European Journal, 2007, 13, 1231-1239.	1.7	100
92	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	11.1	100
93	Synthesis of Oligoparaphenylene-Derived Nanohoops Employing an Anthracene Photodimerization–Cycloreversion Strategy. Journal of the American Chemical Society, 2016, 138, 11144-11147.	6.6	97
94	A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging. RSC Advances, 2014, 4, 8360.	1.7	96
95	A Novel Intermolecular Synthesis of \hat{I}^3 -Lactones via Visible-Light Photoredox Catalysis. Organic Letters, 2013, 15, 6054-6057.	2.4	95
96	Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity. Advanced Functional Materials, 2019, 29, 1808079.	7.8	95
97	Cobaloxime Catalysis: Selective Synthesis of Alkenylphosphine Oxides under Visible Light. Journal of the American Chemical Society, 2019, 141, 13941-13947.	6.6	93
98	Facile preparation of black Nb ⁴⁺ self-doped K ₄ Nb ₆ O ₁₇ microspheres with high solar absorption and enhanced photocatalytic activity. Chemical Communications, 2014, 50, 9554.	2.2	92
99	Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO ₄ Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 18577-18583.	4.0	92
100	Artificial light-harvesting supramolecular polymeric nanoparticles formed by pillar[5]arene-based host–guest interaction. Chemical Communications, 2018, 54, 1117-1120.	2.2	92
101	Metallic Co ₂ C: A Promising Co-catalyst To Boost Photocatalytic Hydrogen Evolution of Colloidal Quantum Dots. ACS Catalysis, 2018, 8, 5890-5895.	5.5	92
102	Photocatalytic Hydrogen Evolution from Glycerol and Water over Nickelâ€Hybrid Cadmium Sulfide Quantum Dots under Visibleâ€Light Irradiation. ChemSusChem, 2014, 7, 1468-1475.	3.6	91
103	Photoresponsive supramolecular self-assembly of monofunctionalized pillar[5] arene based on stiff stilbene. Chemical Communications, 2014, 50, 7001-7003.	2.2	91
104	The singlet excited state of BODIPY promoted aerobic cross-dehydrogenative-coupling reactions under visible light. Chemical Communications, 2015, 51, 11256-11259.	2.2	91
105	A Bioâ€inspired Cu ₄ O ₄ Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. Angewandte Chemie - International Edition, 2018, 57, 7850-7854.	7.2	91
106	Quantum Dot Assembly for Lightâ€Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 10804-10811.	7.2	91
107	A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy and Environmental Science, 2015, 8, 1443-1449.	15.6	90
108	Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 10365-10373.	5.2	89

#	Article	IF	CITATIONS
109	Activation of CH Bonds through Oxidantâ€Free Photoredox Catalysis: Crossâ€Coupling Hydrogenâ€Evolution Transformation of Isochromans and βâ€Keto Esters. Chemistry - A European Journal, 2015, 21, 18080-18084.	1.7	85
110	"Naked―Magnetically Recyclable Mesoporous Au–γâ€Fe ₂ O ₃ Nanocrystal Clusters: A Highly Integrated Catalyst System. Advanced Functional Materials, 2017, 27, 1606215.	7.8	85
111	Exploring the Reducing Ability of Organic Dye (Acr ⁺ -Mes) for Fluorination and Oxidation of Benzylic C(sp ³)–H Bonds under Visible Light Irradiation. Organic Letters, 2017, 19, 3009-3012.	2.4	85
112	Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chemical Communications, 2013, 49, 9872.	2.2	84
113	Metal-Free, Redox-Neutral, Site-Selective Access to Heteroarylamine via Direct Radical–Radical Cross-Coupling Powered by Visible Light Photocatalysis. Journal of the American Chemical Society, 2020, 142, 16805-16813.	6.6	84
114	Combining Visible Light Catalysis and Transition Metal Catalysis for the Alkylation of Secondary Amines. Advanced Synthesis and Catalysis, 2013, 355, 2158-2164.	2.1	82
115	Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catalysis Today, 2014, 225, 158-163.	2.2	82
116	An isolable catenane consisting of two MÃ \P bius conjugated nanohoops. Nature Communications, 2018, 9, 3037.	5.8	82
117	Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO ₂ with exposed {001} facet. Physical Chemistry Chemical Physics, 2016, 18, 20338-20344.	1.3	80
118	Facile synthesis of ultrathin SnNb ₂ O ₆ nanosheets towards improved visible-light photocatalytic H ₂ -production activity. Chemical Communications, 2016, 52, 8239-8242.	2.2	79
119	Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation. Journal of Energy Chemistry, 2019, 34, 57-63.	7.1	78
120	Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions. Chemical Communications, 2014, 50, 6664.	2.2	77
121	Reactions of Singlet Oxygen with Olefins and Sterically Hindered Amine in Mixed Surfactant Vesicles. Journal of the American Chemical Society, 2000, 122, 2446-2451.	6.6	76
122	Versatile Photosensitization System for 102-Mediated Oxidation of Alkenes Based on Nafion-Supported Platinum(II) Terpyridyl Acetylide Complex. Organic Letters, 2003, 5, 3221-3224.	2.4	76
123	FeO–CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Materials, 2020, 12, .	3.8	76
124	Pure Organic Room Temperature Phosphorescence from Unique Micelleâ€Assisted Assembly of Nanocrystals in Water. Advanced Functional Materials, 2020, 30, 1907282.	7.8	75
125	Visible Light Catalysis-Assisted Assembly of Ni _h -QD Hollow Nanospheres in Situ via Hydrogen Bubbles. Journal of the American Chemical Society, 2014, 136, 8261-8268.	6.6	74
126	Synthesis and Characterization of a Pentiptyceneâ€Derived Dual Oligoparaphenylene Nanohoop. Angewandte Chemie - International Edition, 2019, 58, 3943-3947.	7.2	74

#	Article	IF	CITATIONS
127	Photocatalytic Hydrogen Evolution by [FeFe] Hydrogenase Mimics in Homogeneous Solution. Chemistry - an Asian Journal, 2010, 5, 1796-1803.	1.7	72
128	Aggregation behavior of a chiral long-chain ionic liquid in aqueous solution. Journal of Colloid and Interface Science, 2010, 343, 94-101.	5.0	72
129	Photocatalysis with Quantum Dots and Visible Light for Effective Organic Synthesis. Chemistry - A European Journal, 2018, 24, 11530-11534.	1.7	71
130	Oxidative Cyclization Synthesis of Tetrahydroquinolines and Reductive Hydrogenation of Maleimides under Redox-Neutral Conditions. Organic Letters, 2018, 20, 2916-2920.	2.4	71
131	Photocatalytic C–C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. Organic Letters, 2019, 21, 4153-4158.	2.4	71
132	Fluorescent sensors for selective detection of thiols: expanding the intramolecular displacement based mechanism to new chromophores. Analyst, The, 2014, 139, 1389.	1.7	70
133	Direct C–H difluoromethylenephosphonation of arenes and heteroarenes with bromodifluoromethyl phosphonate via visible-light photocatalysis. Chemical Communications, 2014, 50, 15916-15919.	2.2	70
134	Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system. Chemical Communications, 2012, 48, 8081.	2.2	68
135	Visible Light Initiated Hantzsch Synthesis of 2,5-Diaryl-Substituted Pyrroles at Ambient Conditions. Organic Letters, 2016, 18, 2479-2482.	2.4	68
136	Metalâ€Free Desulfonylation Reaction Through Visibleâ€Light Photoredox Catalysis. European Journal of Organic Chemistry, 2013, 2013, 7528-7532.	1.2	67
137	A Hydrogenâ€Bondedâ€Supramolecularâ€Polymerâ€Based Nanoprobe for Ratiometric Oxygen Sensing in Living Cells. Advanced Functional Materials, 2016, 26, 5419-5425.	7.8	67
138	Visible-Light-Driven Synthesis of 4-Alkyl/Aryl-2-Aminothiazoles Promoted by In Situ Generated Copper Photocatalyst. ACS Catalysis, 2017, 7, 7941-7945.	5.5	67
139	Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. Nano Energy, 2019, 60, 467-475.	8.2	67
140	Reverse saturable absorption of platinum ter/bipyridyl polyphenylacetylide complexes. Applied Physics Letters, 2003, 82, 850-852.	1.5	66
141	Visible-Light Photocatalysis Employing Dye-Sensitized Semiconductor: Selective Aerobic Oxidation of Benzyl Ethers. ACS Catalysis, 2017, 7, 8134-8138.	5 . 5	66
142	Silicaâ€Protected Ultrathin Ni ₃ FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH ₃ BH ₃ . Advanced Energy Materials, 2018, 8, 1702780.	10.2	66
143	BODIPY-based fluorescent probe for the simultaneous detection of glutathione and cysteine/homocysteine at different excitation wavelengths. RSC Advances, 2015, 5, 3959-3964.	1.7	65
144	Comparison of H ₂ photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy) ₃ Cl ₂ in aqueous solution. Energy and Environmental Science, 2016, 9, 2083-2089.	15.6	65

#	Article	IF	CITATIONS
145	Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots. Advanced Science, 2018, 5, 1700684.	5.6	65
146	ZnCl2 Enabled Synthesis of Highly Crystalline and Emissive Carbon Dots with Exceptional Capability to Generate O2â–. Matter, 2020, 2, 495-506.	5.0	63
147	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 21728-21731.	7.2	63
148	Switch of the Lowest Excited-States of Terpyridylplatinum(II) Acetylide Complexes Bearing Amino or Azacrown Moieties by Proton and Cations. European Journal of Inorganic Chemistry, 2004, 2004, 1948-1954.	1.0	62
149	Graphene-Supported RuO ₂ Nanoparticles for Efficient Aerobic Cross-Dehydrogenative Coupling Reaction in Water. Organic Letters, 2012, 14, 5992-5995.	2.4	62
150	Synthesis of 2-substituted pyrimidines and benzoxazoles via a visible-light-driven organocatalytic aerobic oxidation: enhancement of the reaction rate and selectivity by a base. Green Chemistry, 2014, 16, 3752.	4.6	62
151	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie - International Edition, 2020, 59, 23456-23460.	7.2	62
152	Synthesis, Spectroscopic, Electrochemical and Pb2+-Binding Studies of Tetrathiafulvalene Acetylene Derivatives. Journal of Organic Chemistry, 2007, 72, 3632-3639.	1.7	61
153	Visible-light-promoted aerobic metal-free aminothiocyanation of activated ketones. Green Chemistry, 2018, 20, 5464-5468.	4.6	61
154	Holeâ€Acceptingâ€Ligandâ€Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy. Advanced Science, 2016, 3, 1500282.	5.6	60
155	Photosensitized Oxidative Deprotection of Oximes to Their Corresponding Carbonyl Compounds by Platinum(II) Terpyridyl Acetylide Complex. Journal of Organic Chemistry, 2004, 69, 4788-4791.	1.7	59
156	Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. CheM, 2021, 7, 1244-1257.	5.8	59
157	Zipper-Featured l´-Peptide Foldamers Driven by Donorâ^'Acceptor Interaction. Design, Synthesis, and Characterization. Journal of Organic Chemistry, 2004, 69, 270-279.	1.7	58
158	A Unique 1,2-Acyl Migration for the Construction of Quaternary Carbon by Visible Light Irradiation of Platinum(II) Polypyridyl Complex and Molecular Oxygen. Organic Letters, 2014, 16, 5968-5971.	2.4	58
159	Surface stoichiometry manipulation enhances solar hydrogen evolution of CdSe quantum dots. Journal of Materials Chemistry A, 2018, 6, 6015-6021.	5.2	57
160	Synthesis of a Photoresponsive Cryptand and Its Complexations with Paraquat and 2,7-Diazapyrenium. Organic Letters, 2014, 16, 684-687.	2.4	56
161	Highly Efficient Cucurbit[8]uril-Templated Intramolecular Photocycloaddition of 2-Naphthalene-Labeled Poly(ethylene glycol) in Aqueous Solution. Journal of Organic Chemistry, 2008, 73, 491-494.	1.7	55
162	Facile Synthesis and Functionality-Dependent Electrochemistry of Fe-Only Hydrogenase Mimics. Inorganic Chemistry, 2008, 47, 8101-8111.	1.9	55

#	Article	IF	CITATIONS
163	Electron transfer and hydrogen generation from a molecular dyad: platinum(ii) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic. Dalton Transactions, 2012, 41, 2420.	1.6	55
164	Branched Polyethylenimine Improves Hydrogen Photoproduction from a CdSe Quantum Dot/[FeFe]â€Hydrogenase Mimic System in Neutral Aqueous Solutions. Chemistry - A European Journal, 2015, 21, 3187-3192.	1.7	55
165	Benzene C–H Etherification via Photocatalytic Hydrogen-Evolution Cross-Coupling Reaction. Organic Letters, 2017, 19, 2206-2209.	2.4	55
166	Preparation of Heterocycles via Visible-Light-Driven Aerobic Selenation of Olefins with Diselenides. Organic Letters, 2019, 21, 885-889.	2.4	55
167	Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration. Advanced Materials, 2019, 31, e1804872.	11.1	55
168	First Fluorescent Sensor for Fluoride Based on 2-Ureido-4[1H]-pyrimidinone Quadruple Hydrogen-Bonded AADD Supramolecular Assembly. Journal of Organic Chemistry, 2006, 71, 2143-2146.	1.7	54
169	Reversible multistimuli-responsive vesicles formed by an amphiphilic cationic platinum(ii) terpyridyl complex with a ferrocene unit in water. Chemical Communications, 2012, 48, 10886.	2.2	54
170	Exceptional Catalytic Nature of Quantum Dots for Photocatalytic Hydrogen Evolution without External Cocatalysts. Advanced Functional Materials, 2018, 28, 1801769.	7.8	54
171	Direct Allylic C(sp ³)â^'H and Vinylic C(sp ²)â^'H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angewandte Chemie - International Edition, 2021, 60, 11779-11783.	7.2	54
172	Aerobic Oxidative Coupling of Resveratrol and its Analogues by Visible Light Using Mesoporous Graphitic Carbon Nitride (mpg ₃ N ₄) as a Bioinspired Catalyst. Chemistry - A European Journal, 2014, 20, 678-682.	1.7	53
173	Flower-like CdSe ultrathin nanosheet assemblies for enhanced visible-light-driven photocatalytic H ₂ production. Chemical Communications, 2015, 51, 4677-4680.	2.2	53
174	Radical Addition of Hydrazones by α-Bromo Ketones To Prepare 1,3,5-Trisubstituted Pyrazoles via Visible Light Catalysis. Journal of Organic Chemistry, 2016, 81, 7127-7133.	1.7	53
175	Visible Light Promoted Synthesis of Indoles by Single Photosensitizer under Aerobic Conditions. Organic Letters, 2017, 19, 3251-3254.	2.4	53
176	Fluorophenyl-substituted Fe-only hydrogenases active site ADT models: different electrocatalytic process for proton reduction in HOAc and HBF4/Et2O. Dalton Transactions, 2009, , 2712.	1.6	51
177	A colorimetric and fluorometric dual-modal chemosensor for cyanide in water. Sensors and Actuators B: Chemical, 2012, 168, 14-19.	4.0	51
178	Unveiling Catalytic Sites in a Typical Hydrogen Photogeneration System Consisting of Semiconductor Quantum Dots and 3d-Metal Ions. Journal of the American Chemical Society, 2020, 142, 4680-4689.	6.6	51
179	Zeolites as Templates for Preparation of Large-Ring Compounds:Â Intramolecular Photocycloaddition of Diaryl Compounds. Journal of the American Chemical Society, 1998, 120, 11594-11602.	6.6	50
180	A triad [FeFe] hydrogenase system for light-driven hydrogen evolution. Chemical Communications, 2011, 47, 8406.	2.2	50

#	Article	IF	CITATIONS
181	BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions. Analytica Chimica Acta, 2013, 775, 93-99.	2.6	50
182	A Cascade Crossâ€Coupling and ⟨i⟩in Situ⟨/i⟩ Hydrogenation Reaction by Visible Light Catalysis. Advanced Synthesis and Catalysis, 2014, 356, 2846-2852.	2.1	50
183	Organogelators Based on TTF Supramolecular Assemblies: Synthesis, Characterization, and Conductive Property. Langmuir, 2011, 27, 774-781.	1.6	49
184	Amphiphilic polymeric micelles as microreactors: improving the photocatalytic hydrogen production of the [FeFe]-hydrogenase mimic in water. Chemical Communications, 2016, 52, 457-460.	2.2	49
185	Direct, Siteâ€Selective and Redoxâ€Neutral αâ€Câ^'H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 27201-27205.	7.2	49
186	Multipleâ€State Emissions from Neat, Singleâ€Component Molecular Solids: Suppression of Kasha's Rule. Angewandte Chemie - International Edition, 2020, 59, 10173-10178.	7.2	49
187	Reversible Sol-to-Gel Transformation of Uracil Gelators: Specific Colorimetric and Fluorimetric Sensor for Fluoride Ions. Langmuir, 2013, 29, 2843-2848.	1.6	48
188	Visibleâ€Lightâ€Driven Intermolecular [2+2] Cycloadditions between Coumarinâ€3â€Carboxylates and Acrylamide Analogs. Chemistry - A European Journal, 2015, 21, 10326-10329.	1.7	48
189	A Redox Shuttle Accelerates O ₂ Evolution of Photocatalysts Formed In Situ under Visible Light. Advanced Materials, 2017, 29, 1606009.	11.1	48
190	Copper(<scp>i</scp>) cysteine complexes: efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H ₂ production. Chemical Communications, 2015, 51, 12556-12559.	2.2	47
191	Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie, 2017, 129, 3748-3752.	1.6	47
192	A light-driven molecular machine based on stiff stilbene. Chemical Communications, 2018, 54, 7991-7994.	2.2	47
193	Photoelectrochemical cell for P–H/C–H cross-coupling with hydrogen evolution. Chemical Communications, 2019, 55, 10376-10379.	2.2	47
194	Semiconducting Neutral Microstructures Fabricated by Coordinative Selfâ€Assembly of Intramolecular Chargeâ€Transfer Tetrathiafulvalene Derivatives. Chemistry - A European Journal, 2009, 15, 5124-5129.	1.7	46
195	Cucurbit[8]uril-mediated photodimerization of alkyl 2-naphthoate in aqueous solution. Tetrahedron Letters, 2008, 49, 1502-1505.	0.7	45
196	pH-Responsive reversible self-assembly of gold nanoparticles into nanovesicles. Nanoscale, 2016, 8, 3923-3925.	2.8	45
197	Nonstoichiometric Cu _{<i>x</i>} In _{<i>y</i>} S Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4833-4838.	3.6	45
198	Two-photon induced fluorescence of novel dyes. Chemical Physics Letters, 1999, 315, 379-382.	1.2	44

#	Article	IF	Citations
199	Tracking Co(I) Intermediate in Operando in Photocatalytic Hydrogen Evolution by X-ray Transient Absorption Spectroscopy and DFT Calculation. Journal of Physical Chemistry Letters, 2016, 7, 5253-5258.	2.1	44
200	Protonated Graphitic Carbon Nitride with Surface Attached Molecule as Hole Relay for Efficient Photocatalytic O ₂ Evolution. ACS Catalysis, 2016, 6, 8336-8341.	5.5	44
201	Reversible Light-Triggered Transition of Amphiphilic Random Copolymers. Macromolecules, 2012, 45, 5596-5603.	2.2	43
202	Visible light-catalytic dehydrogenation of benzylic alcohols to carbonyl compounds by using an eosin Y and nickel–thiolate complex dual catalyst system. Green Chemistry, 2019, 21, 1401-1405.	4.6	43
203	Nitrogenase inspired artificial photosynthetic nitrogen fixation. CheM, 2021, 7, 1431-1450.	5.8	43
204	To Combine Precursor Assembly and Layer-by-layer Deposition for Incorporation of Single-charged Species:  Nanocontainers with Charge-selectivity and Nanoreactors. Chemistry of Materials, 2005, 17, 6679-6685.	3.2	42
205	Combining visible light catalysis and transfer hydrogenation for in situ efficient and selective semihydrogenation of alkynes under ambient conditions. Chemical Communications, 2016, 52, 1800-1803.	2.2	42
206	Recent Advances in the Synthesis, Characterization and Application of Zn ⁺ â€containing Heterogeneous Catalysts. Advanced Science, 2016, 3, 1500424.	5.6	42
207	Photoinduced synthesis of fluorinated dibenz[<i>b</i> , <i>e</i>]azepines <i>via</i> radical triggered cyclization. Chemical Communications, 2019, 55, 10848-10851.	2.2	42
208	Rational Design of Dotâ€onâ€Rod Nanoâ€Heterostructure for Photocatalytic CO ₂ Reduction: Pivotal Role of Hole Transfer and Utilization. Advanced Materials, 2022, 34, e2106662.	11.1	42
209	Dinuclear cyclometallated platinum(II) complex as a sensitive luminescent probe for SDS micelles. Chemical Communications, 1998, , 1127-1128.	2.2	41
210	Threeâ€Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 198-203.	1.6	41
211	Visible Light Irradiation of Acyl Oxime Esters and Styrenes Efficiently Constructs β-Carbonyl Imides by a Scission and Four-Component Reassembly Process. Organic Letters, 2019, 21, 8789-8794.	2.4	41
212	Direct 1,2â€Dicarbonylation of Alkenes towards 1,4â€Diketones via Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 26822-26828.	7.2	41
213	Preparation of \hat{I}_{\pm} -Acyloxy Ketones via Visible-Light-Driven Aerobic Oxo-Acyloxylation of Olefins with Carboxylic Acids. Organic Letters, 2016, 18, 5256-5259.	2.4	40
214	Identifying key intermediates generated in situ from Cu(II) salt–catalyzed C–H functionalization of aromatic amines under illumination. Science Advances, 2017, 3, e1700666.	4.7	40
215	Visible Light-Catalyzed Benzylic C–H Bond Chlorination by a Combination of Organic Dye (Acr ⁺ -Mes) and <i>N</i> -Chlorosuccinimide. Journal of Organic Chemistry, 2020, 85, 9080-9087.	1.7	40
216	Vectorial Electron Transfer for Improved Hydrogen Evolution by Mercaptopropionicâ€Acidâ€Regulated CdSe Quantumâ€Dots–TiO ₂ –Ni(OH) ₂ Assembly. ChemSusChem, 2015, 8, 642-649	9. ^{3.6}	39

#	Article	IF	Citations
217	Reactivity and mechanistic insight into the cross coupling reaction between isochromans and β-keto esters through C–H bond activation under visible light irradiation. Organic Chemistry Frontiers, 2016, 3, 486-490.	2.3	39
218	Assembling metallic 1T-MoS ₂ nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chemical Communications, 2017, 53, 5606-5609.	2.2	39
219	Luminescent supramolecular polymer nanoparticles for ratiometric hypoxia sensing, imaging and therapy. Materials Chemistry Frontiers, 2018, 2, 1893-1899.	3.2	39
220	Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis. Journal of Organic Chemistry, 2019, 84, 12904-12912.	1.7	39
221	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 14952-14957.	7.2	38
222	Cobaloxime Catalysis for Enamine Phosphorylation with Hydrogen Evolution. Organic Letters, 2020, 22, 5385-5389.	2.4	38
223	Hydrogen Bonding Directed Self-Assembly of Small-Molecule Amphiphiles in Water. Organic Letters, 2014, 16, 4016-4019.	2.4	37
224	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. Angewandte Chemie - International Edition, 2019, 58, 8443-8447.	7.2	37
225	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie - International Edition, 2020, 59, 5365-5370.	7.2	37
226	Lightâ€Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes. Angewandte Chemie, 2016, 128, 2809-2813.	1.6	36
227	Regioselective <i>Ortho</i> Amination of an Aromatic C–H Bond by Trifluoroacetic Acid via Electrochemistry. Organic Letters, 2019, 21, 5581-5585.	2.4	36
228	Site- and Spatial-Selective Integration of Non-noble Metal Ions into Quantum Dots for Robust Hydrogen Photogeneration. Matter, 2020, 3, 571-585.	5.0	36
229	Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO ₂ Reduction in Water Using ZnSe Quantum Dots. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
230	Î ³ -Cyclodextrin-Directed Enantioselective Photocyclodimerization of Methyl 3-Methoxyl-2-naphthoate. Journal of Organic Chemistry, 2009, 74, 3506-3515.	1.7	35
231	Visibleâ€Lightâ€Driven Photocatalytic Activation of Inert Sulfur Ylides for 3â€Acyl Oxindole Synthesis. Chemistry - A European Journal, 2016, 22, 8432-8437.	1.7	35
232	Enhanced Charge Separation Efficiency Accelerates Hydrogen Evolution from Water of Carbon Nitride and 3,4,9,10-Perylene-tetracarboxylic Dianhydride Composite Photocatalyst. ACS Applied Materials & Diterfaces, 2018, 10, 3515-3521.	4.0	35
233	Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy. ACS Applied Nano Materials, 2020, 3, 5070-5078.	2.4	35
234	Enhancing the Supply of Activated Hydrogen to Promote Photocatalytic Nitrogen Fixation. , 2021, 3, $1521-1527$.		35

#	Article	IF	CITATIONS
235	Long-Lived Photoinduced Charge Separation in Ru(Bpy)32+/Viologen System at Nafion Membraneâ°Solution Interface. Journal of Physical Chemistry B, 2000, 104, 9468-9474.	1.2	34
236	Photoinduced hydroxylperfluoroalkylation of styrenes. Organic Chemistry Frontiers, 2018, 5, 1045-1048.	2.3	34
237	Photoinduced Electron Transfer and Charge-Recombination in 2-Ureido-4[1H]-Pyrimidinone Quadruple Hydrogen-Bonded Porphyrin–Fullerene Assemblies. Journal of Physical Chemistry C, 2011, 115, 23634-23641.	1.5	33
238	Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. Scientific Reports, 2016, 6, 29851.	1.6	33
239	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie, 2016, 128, 4287-4291.	1.6	33
240	A Conjugated Figureâ€ofâ€Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
241	Multistimuli Responsive Micelles Formed by a Tetrathiafulvalene-Functionalized Amphiphile. Langmuir, 2011, 27, 8665-8671.	1.6	32
242	Facile Photoreduction of Graphene Oxide by an NAD(P)H Model: Hantzsch 1,4-Dihydropyridine. Langmuir, 2012, 28, 8224-8229.	1.6	32
243	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. Angewandte Chemie, 2017, 129, 3066-3070.	1.6	32
244	Enhancement of intramolecular excimer formation, photodimerization and energy transfer of naphthalene end-labelled poly(ethylene glycol) oligomers via complexation of alkali-metal and lanthanide cations. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1381.	1.7	31
245	IRA-200 resin-supported platinum(II) complex for photooxidation of olefins. Tetrahedron, 2007, 63, 4907-4911.	1.0	31
246	Photochemical Preparation of Pyrimidin-2(1H)-ones by Rhenium(I) Complexes with Visible Light. Journal of Organic Chemistry, 2011, 76, 1444-1447.	1.7	31
247	Synthesis of a disulfide-bridged bispillar[5]arene and its application in supramolecular polymers. Polymer Chemistry, 2016, 7, 2057-2061.	1.9	31
248	Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C ₁ â€Solarchemie. Angewandte Chemie, 2019, 131, 17690-17715.	1.6	31
249	Microreactor-controlled selectivity in organic photochemical reactions. Pure and Applied Chemistry, 2000, 72, 2289-2298.	0.9	30
250	A Sustainable Strategy for the Synthesis of Pyrochlore H ₄ Nb ₂ O ₇ Hollow Microspheres as Photocatalysts for Overall Water Splitting. ChemPlusChem, 2017, 82, 181-185.	1.3	30
251	Flower-like cobalt carbide for efficient carbon dioxide conversion. Chemical Communications, 2020, 56, 7849-7852.	2.2	30
252	Self-assembly of a novel series of hetero-duplexes driven by donor–acceptor interaction. Tetrahedron, 2005, 61, 7117-7124.	1.0	29

#	Article	IF	CITATIONS
253	A selective turn-on fluorescent probe for Cd2+ based on a boron difluoride \hat{l}^2 -dibenzoyl dye and its application in living cells. Organic and Biomolecular Chemistry, 2013, 11, 3014.	1.5	29
254	Selfâ€Assembled Amphiphilic Water Oxidation Catalysts: Control of Oâ^'O Bond Formation Pathways by Different Aggregation Patterns. Angewandte Chemie - International Edition, 2016, 55, 6229-6234.	7.2	29
255	Enhanced visible-light-driven hydrogen generation by in situ formed photocatalyst RGO–CdS–Ni _x S from metal salts and RGO–CdS composites. Journal of Materials Chemistry A, 2017, 5, 9537-9543.	5.2	29
256	Photoresponsive AA/BB supramolecular polymers comprising stiff-stilbene based guests and bispillar[5] arenes. Polymer Chemistry, 2017, 8, 3596-3602.	1.9	29
257	Eosin Y- and Copper-Catalyzed Dark Reaction To Construct Ene-Î ³ -Lactams. Organic Letters, 2018, 20, 7220-7224.	2.4	29
258	Direct synthesis of sulfide capped CdS and CdS/ZnS colloidal nanocrystals for efficient hydrogen evolution under visible light irradiation. Journal of Materials Chemistry A, 2018, 6, 16328-16332.	5.2	29
259	Visible Light Induced Cross-Coupling Hydrogen Evolution Reactions. Acta Chimica Sinica, 2017, 75, 34.	0.5	29
260	Microemulsions of N-Alkylimidazolium Ionic Liquid and Their Performance as Microreactors for the Photocycloaddition of 9-Substituted Anthracenes. Langmuir, 2009, 25, 5484-5490.	1.6	28
261	Monofunctionalized pillar[5]arene-based stable [1]pseudorotaxane. Chinese Chemical Letters, 2015, 26, 843-846.	4.8	28
262	Metallaphotoredox Dearomatization of Indoles by a Benzamide-Empowered $[4+2]$ Annulation: Facile Access to Indolo $[2,3-c]$ isoquinolin-5-ones. ACS Catalysis, 2021, 11, 5054-5060.	5 . 5	28
263	Adsorptive separation of cyclohexanol and cyclohexanone by nonporous adaptive crystals of RhombicArene. Chemical Science, 2021, 12, 15528-15532.	3.7	28
264	Photoredox Oxo-C(sp ³)–H Bond Functionalization via in Situ Cu(I)-Acetylide Catalysis. Organic Letters, 2020, 22, 832-836.	2.4	27
265	Molecular logic circuit based on a multi-state mononuclear platinum(ii) terpyridyl complex. Physical Chemistry Chemical Physics, 2010, 12, 13026.	1.3	26
266	Water-soluble, membrane-permeable organic fluorescent nanoparticles with large tunability in emission wavelengths and Stokes shifts. Chemical Communications, 2013, 49, 5877.	2.2	26
267	Photoinduced Triplet–Triplet Energy Transfer in a 2â€Ureidoâ€4(1 <i>H</i>)â€Pyrimidinoneâ€Bridged, Quadrupl Hydrogenâ€Bonded Ferrocene–Fullerene Assembly. ChemPhysChem, 2013, 14, 198-203.	у _{1.0}	26
268	Dicyanoboron diketonate dyes: Synthesis, photophysical properties and bioimaging. Dyes and Pigments, 2015, 112, 162-169.	2.0	26
269	Visible-light-enabled aerobic synthesis of benzoin bis-ethers from alkynes and alcohols. Green Chemistry, 2018, 20, 5479-5483.	4.6	26
270	Photoredox/Cobalt-Catalyzed C(sp ³)â€"H Bond Functionalization toward Phenanthrene Skeletons with Hydrogen Evolution. Organic Letters, 2020, 22, 9627-9632.	2.4	26

#	Article	IF	CITATIONS
271	Thiol Activation toward Selective Thiolation of Aromatic C–H Bond. Organic Letters, 2020, 22, 3804-3809.	2.4	26
272	Photoinduced Intramolecular Electron Transfer and Triplet Energy Transfer in a Steroid-Linked Norbornadiene–Carbazole Dyad. Chemistry - A European Journal, 2003, 9, 2763-2769.	1.7	25
273	Synthesis and Photophysical Studies of Calix[4]arene-based Binuclear Platinum(II) Complexes: Probing Metalâ^'Metal and Ligandâ^'Ligand Interactions. Inorganic Chemistry, 2008, 47, 5099-5106.	1.9	25
274	Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. Analyst, The, 2012, 137, 1220.	1.7	25
275	Borylation of Diazonium Salts by Highly Emissive and Crystalline Carbon Dots in Water. ChemSusChem, 2020, 13, 1715-1719.	3.6	25
276	Mechanistic Insights Into Iron(II) Bis(pyridyl)amineâ€Bipyridine Skeleton for Selective CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2021, 60, 26072-26079.	7.2	25
277	Efficient and selective photodimerization of 2-naphthalenecarbonitrile mediated by cucurbit[8]uril in an aqueous solution. Photochemical and Photobiological Sciences, 2011, 10, 1441-1444.	1.6	24
278	Oneâ€Pot Hydrothermal Synthesis and Photocatalytic Hydrogen Evolution of Pyrochlore Type K ₂ Nb ₂ O ₆ . Chinese Journal of Chemistry, 2014, 32, 485-490.	2.6	24
279	Tandem photoelectrochemical and photoredox catalysis for efficient and selective aryl halides functionalization by solar energy. Matter, 2021, 4, 2354-2366.	5.0	24
280	Water-in-oil microemulsions as microreactors to control the regioselectivity in the photocycloaddition of 9-substituted anthracenes. Tetrahedron Letters, 2002, 43, 1281-1283.	0.7	23
281	Cucurbit[7]uril-included neutral intramolecular charge-transfer ferrocene derivatives. Dalton Transactions, 2007, , 3991.	1.6	23
282	Silica- and polymer-supported platinum(II) polypyridyl complexes: synthesis and application in photosensitized oxidation of alkenes. Dalton Transactions, 2009, , 9794.	1.6	23
283	Visible Light-Induced Synthesis of 3,4-Diarylthiophenes from 3,4-Diaryl-2,5-dihydrothiophenes. Journal of Organic Chemistry, 2012, 77, 6773-6777.	1.7	23
284	Effects of surfactants on visible-light-driven photocatalytic hydrogen evolution activities of AgInZn7S9 nanorods. Applied Surface Science, 2015, 358, 485-490.	3.1	23
285	A Phosphorescent Platinum(II) Bipyridyl Supramolecular Polymer Based on Quadruple Hydrogen Bonds. Chemistry - A European Journal, 2016, 22, 18132-18139.	1.7	23
286	Visible-light photoredox intramolecular difluoroacetamidation: facile synthesis of 3,3-difluoro-2-oxindoles from bromodifluoroacetamides. Organic and Biomolecular Chemistry, 2016, 14, 2195-2199.	1.5	23
287	Nanocrystals@Hollow Mesoporous Silica Reverseâ€Bumpyâ€Ball Structure Nanoreactors by a Versatile Microemulsionâ€Templated Approach. Small Methods, 2018, 2, 1800105.	4.6	23
288	Site-selective D ₂ O-mediated deuteration of diaryl alcohols <i>via</i> quantum dots photocatalysis. Chemical Communications, 2021, 57, 6768-6771.	2,2	23

#	Article	IF	CITATIONS
289	Confined Space-Controlled Hydroperoxidation of Trisubstituted Alkenes Adsorbed on Pentasil Zeolites. Journal of Organic Chemistry, 2005, 70, 4676-4681.	1.7	22
290	Long-Lived Charge Separation in a Dyad System Containing Cyclometalated Platinum(II) Complex and Ferrocene Donor. Journal of Physical Chemistry C, $2011, 115, 833-839$.	1.5	22
291	A highly selective and sensitive luminescent chemosensor for Zn2+ ions based on cyclometalated platinum(ii) complexes. Dalton Transactions, 2013, 42, 4244.	1.6	22
292	Colorimetric sensors with different reactivity for the quantitative determination of cysteine, homocysteine and glutathione in a mixture. RSC Advances, 2015, 5, 13042-13045.	1.7	22
293	Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chemical Communications, 2020, 56, 15496-15512.	2.2	22
294	Synthesis of \hat{l} ±, \hat{l} 2-unsaturated \hat{l} 3-lactones via photooxygenation of 2,3-dihydrofurans followed by ferrous ion-catalyzed gem-dehydration. Tetrahedron, 2006, 62, 10688-10693.	1.0	21
295	Photoinduced Tripletâ^'Triplet Energy Transfer via the 2-Ureido-4[1 <i>H</i>]-pyrimidinone Self-Complementary Quadruple Hydrogen-Bonded Module. Journal of Physical Chemistry A, 2008, 112, 3865-3869.	1.1	21
296	Direct C–H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. Organic Letters, 2021, 23, 8082-8087.	2.4	21
297	Controlled Photocyclization, Photodimerization, and Photoisomerization of Stilbazole Salts within Nafion Membranes. Organic Letters, 2002, 4, 1175-1177.	2.4	20
298	Stepwise Photochemical-Chiral Delivery in \hat{I}^3 -Cyclodextrin-Directed Enantioselective Photocyclodimerization of Methyl 3-Methoxyl-2-Naphthoate in Aqueous Solution. Langmuir, 2010, 26, 782-785.	1.6	20
299	Water-soluble sulfonated–graphene–platinum nanocomposites: facile photochemical preparation with enhanced catalytic activity for hydrogen photogeneration. Catalysis Science and Technology, 2013, 3, 1815.	2.1	20
300	Autoxidation/Aldol Tandem Reaction of 2â€Oxindoles with Ketones: A Green Approach for the Synthesis of 3â€Hydroxyâ€2â€Oxindoles. Chemistry - A European Journal, 2016, 22, 2595-2598.	1.7	20
301	A multi-stimuli-responsive fluorescence switch based on E–Z isomerization of hydrazone. RSC Advances, 2016, 6, 41002-41006.	1.7	20
302	Effect of electron transfer on the photocatalytic hydrogen evolution efficiency of faceted TiO ₂ /CdSe QDs under visible light. New Journal of Chemistry, 2018, 42, 4811-4817.	1.4	20
303	Optimal d-band-induced Cu ₃ N as a cocatalyst on metal sulfides for boosting photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 22601-22606.	5.2	20
304	Enhancement of Diastereoselectivity in Photodimerization of Alkyl 2-Naphthoates with Chiral Auxiliaries via Inclusion within \hat{I}^3 -Cyclodextrin Cavities. Journal of Organic Chemistry, 2012, 77, 1685-1692.	1.7	19
305	Cascade reaction-based fluorescent probe for detection of H2S with the assistance of CTAB micelles. Chinese Chemical Letters, 2016, 27, 1793-1796.	4.8	19
306	Tracking the Fe ^{IV} (O) intermediate and O–O bond formation of a nonheme iron catalyst for water oxidation. Chemical Communications, 2017, 53, 9063-9066.	2.2	19

#	Article	IF	Citations
307	A Bioâ€inspired Cu ₄ O ₄ Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. Angewandte Chemie, 2018, 130, 7976-7980.	1.6	19
308	Controllable Selectivity of Photosensitized Oxidation of Olefins Included in Vesicles. Tetrahedron, 2000, 56, 7437-7442.	1.0	18
309	Nanosized Particles of Organically Modified Silica as Microreactors to Enhance the Regioselectivity in the Photocycloaddition of 9-Substituted Anthracenes. Organic Letters, 2003, 5, 1075-1077.	2.4	18
310	Facile Preparation of 3,4-Diarylpyrroles and Hydrogen by a Platinum(II) Terpyridyl Complex. Inorganic Chemistry, 2009, 48, 9995-9997.	1.9	18
311	Homocoupling of 3-Halooxindole via Visible-Light Photocatalysis: A Mild Access to 3,3′-Bioxindoles. Journal of Organic Chemistry, 2016, 81, 7172-7181.	1.7	18
312	Water-soluble copolymeric materials: switchable NIR two-photon fluorescence imaging agents for living cancer cells. Journal of Materials Chemistry B, 2014, 2, 502-510.	2.9	17
313	Domino Radical Addition/Oxidation Sequence with Photocatalysis: Oneâ€Pot Synthesis of Polysubstituted Furans from αâ€Chloroâ€Alkyl Ketones and Styrenes. Chemistry - A European Journal, 2016, 22, 13794-13798.	1.7	17
314	Two-step hydrothermal synthesis of Sn2Nb2O7 nanocrystals with enhanced visible-light-driven H2 evolution activity. Chinese Journal of Catalysis, 2018, 39, 395-400.	6.9	17
315	Enhancement of Intramolecular Photocycloaddition of Bichromophoric Compounds via Inclusion in Low-Density Polyethylene Films. Journal of Organic Chemistry, 1999, 64, 5156-5161.	1.7	16
316	Two-photon-pumped frequency-upconverted lasing and optical power limiting properties of vinylbenzothiazole-containing compounds in solutionElectronic supplementary information (ESI) available: Single-crystal crystallographic data in cif format (CCDC reference number 189061). See http://www.rsc.org/suppdata/cp/b2/b206259c/. Physical Chemistry Chemical Physics, 2002, 4, 5744-5747.	1.3	16
317	C–H···Nill Interaction-Driven HomochiralM andP Helices of Neutral (R,R)- and (S,S)-Bis(pyrrol-2-ylmethyleneamino)cyclohexane Nill Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 3315-3319.	1.0	16
318	Synthesis, structure and electrochemical property of diphenylacetypene-substituted diiron azadithiolates as active site of Fe-only hydrogenases. Tetrahedron Letters, 2007, 48, 4775-4779.	0.7	16
319	Enhanced Stereoselectivity in Photoelectrocyclization of Tropolone Ethers via Confinement in Chiral Inductor-Modified Lyotropic Liquid Crystals. Organic Letters, 2008, 10, 3473-3476.	2.4	16
320	Convenient Synthesis of Functionalized Bisâ€ureidopyrimidinones Based on Thiolâ€yne Reaction. Chemistry - A European Journal, 2014, 20, 11699-11702.	1.7	16
321	Visible light catalyzed aromatization of 1,3,5-triaryl-2-pyrazolines by platinum(II) polypyridyl complex under oxidant-free condition. Science China Chemistry, 2016, 59, 175-179.	4.2	16
322	Visible light-induced photochemical oxygen evolution from water by 3,4,9,10-perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor. Catalysis Science and Technology, 2016, 6, 672-676.	2.1	16
323	Integrating CdSe Quantum Dots with a [FeFe]â€Hydrogenase Mimic into a Photocathode for Hydrogen Evolution at a Low Bias Voltage. ChemPhotoChem, 2017, 1, 260-264.	1.5	16
324	A sustainable synthesis of 2-aryl-3-carboxylate indolines from N-aryl enamines under visible light irradiation. Chemical Communications, 2017, 53, 8320-8323.	2,2	16

#	Article	IF	Citations
325	A Monophosphine Ligand Derived from Anthracene Photodimer: Synthetic Applications for Palladium-Catalyzed Coupling Reactions. Organic Letters, 2019, 21, 8158-8163.	2.4	15
326	Stiff-stilbene derivatives as new bright fluorophores with aggregation-induced emission. Science China Chemistry, 2019, 62, 1194-1197.	4.2	15
327	Amphiphilic Oxo-Bridged Ruthenium "Green Dimer―for Water Oxidation. IScience, 2020, 23, 100969.	1.9	15
328	Photocyclization and photooxidation of 3-styrylthiophene. Tetrahedron Letters, 2000, 41, 1951-1954.	0.7	14
329	Inner-assembly singlet energy transfer in naphthalene–anthracene system linked by 2-ureido-4{1H}-pyrimidinone binding module. Tetrahedron Letters, 2004, 45, 6807-6811.	0.7	14
330	C–Hâ√Pt(II) interaction-controlled self-assembly and photophysics of chiral bis(pyrrol-2-ylmethyleneamino)cyclohexane platinum(II) complexes. Tetrahedron, 2008, 64, 5577-5582.	1.0	14
331	A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY. Chinese Chemical Letters, 2015, 26, 631-635.	4.8	14
332	Bidirectional Singlet and Triplet Energy Transfer via the 2-Ureido- $4[1\langle i\rangle H\langle i\rangle]$ -pyrimidinone Quadruple Hydrogen-Bonded Module. Journal of Physical Chemistry C, 2016, 120, 16507-16515.	1.5	14
333	Self-assembled inorganic clusters of semiconducting quantum dots for effective solar hydrogen evolution. Chemical Communications, 2018, 54, 4858-4861.	2.2	14
334	Adsorption of polyhaloalkane vapors by adaptive macrocycle crystals of WreathArene through C-halogenâ√Ï€ interactions. Chinese Chemical Letters, 2022, 33, 1970-1974.	4.8	14
335	$\langle i \rangle N \langle i \rangle$ -lodosuccinimide and dioxygen in an air-enabled synthesis of 10-phenanthrenols under sunlight. Green Chemistry, 2021, 23, 7193-7198.	4.6	14
336	Intramolecular Triplet Energy Transfer in Donor–Acceptor Molecules Linked by a Crown Ether Bridge. Chemistry - A European Journal, 2006, 12, 5238-5245.	1.7	13
337	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie, 2016, 128, 2207-2210.	1.6	13
338	Polymer-modified hydrophilic graphene: A promotor to photocatalytic hydrogen evolution for in situ formation of core@shell cobalt nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 247-254.	2.0	13
339	Modular Design of Poly(norbornenes) for Organelle-Specific Imaging in Tumor Cells. Biomacromolecules, 2016, 17, 538-545.	2.6	13
340	Mechanistic studies on the atmosphere and light tuned synthesis of cyclobuta/penta[<i>b</i>]indoles. Organic Chemistry Frontiers, 2018, 5, 1890-1895.	2.3	13
341	Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution through Visibleâ€Light Catalysis. Chemistry - A European Journal, 2019, 25, 879-884.	1.7	13
342	Synthesis, structure, and chirality of hydroxyl- and carboxyl-functionalized cubane-like photodimers of 2-naphthalene. Tetrahedron, 2007, 63, 3133-3137.	1.0	12

#	Article	IF	CITATIONS
343	Tetrathiafulvalene derivatives bearing a crown ether with intramolecular charge transfer properties: synthesis and cation binding studies. New Journal of Chemistry, 2009, 33, 813.	1.4	12
344	Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts. Beilstein Journal of Nanotechnology, 2014, 5, 1167-1174.	1.5	12
345	A Versatile â€~Click Chemistry' Route to Sizeâ€Restricted, Robust, and Functionalizable Hydrophilic Nanocrystals. Small, 2015, 11, 1644-1648.	5.2	12
346	Efficient electronic communication-driven photoinduced charge-separation in 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded N,N-dimethylaniline-anthracene assemblies. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 457-466.	2.0	12
347	Visible-Light-Triggered Selective Intermolecular [2+2] Cycloaddition of Extended Enones: 2-Oxo-3-enoates and 2,4-Dien-1-ones with Olefins. Journal of Organic Chemistry, 2019, 84, 9257-9269.	1.7	12
348	Visible-Light-Induced Nanoparticle Assembly for Effective Hydrogen Photogeneration. ACS Sustainable Chemistry and Engineering, 2019, 7, 7286-7293.	3.2	12
349	Controllable synthesis of 2- and 3-aryl-benzomorpholines from 2-aminophenols and 4-vinylphenols. Chemical Communications, 2020, 56, 7941-7944.	2.2	12
350	Tandem $[2+2]$ Cycloaddition/Rearrangement toward Carbazoles by Visible-Light Photocatalysis. Organic Letters, 2021, 23, 2135-2139.	2.4	12
351	Direct, Siteâ€Selective and Redoxâ€Neutral αâ€Câ°'H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angewandte Chemie, 2021, 133, 27407-27411.	1.6	12
352	Long-lived photoinduced charge separation in carbazole–pyrene–viologen system incorporated in Langmuir–Blodgett films of substituted diazacrown ethers. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 150, 101-108.	2.0	11
353	Stereochemistry of a cubane-like photodimer of methyl 2-naphthoate. Tetrahedron Letters, 2006, 47, 4725-4727.	0.7	11
354	Formation of Cubane-like Photodimers from 2-Naphthalenecarbonitrile. Journal of Organic Chemistry, 2008, 73, 7345-7348.	1.7	11
355	Identifying a Real Catalyst of [NiFe]â€Hydrogenase Mimic for Exceptional H 2 Photogeneration. Angewandte Chemie - International Edition, 2020, 59, 18400-18404.	7.2	11
356	Photocatalytic Synthesis of Quinolines via Povarov Reaction under Oxidant-Free Conditions. Organic Letters, 2022, 24, 1180-1185.	2.4	11
357	Siteâ€Selective <i>N</i> àê1 and Câ€3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
358	A novel type of molecular assembly: aggregates formed by molecules with polar chains in nonpolar solvents. Chemical Physics Letters, 1995, 244, 157-163.	1.2	10
359	Remote Activation of the Quadricyclane Group in a Quadricyclaneâ^'Steroidâ''{Dibenzoylmethanatoboron Difluoride} System by Intramolecular Electron Transferâ€. Journal of Physical Chemistry A, 2003, 107, 3438-3442.	1.1	10
360	Photochemical reaction of cyclohexyl phenyl ketone within lyotropic liquid crystals. Tetrahedron, 2008, 64, 1918-1923.	1.0	10

#	Article	IF	Citations
361	Selfâ€Assembled Amphiphilic Water Oxidation Catalysts: Control of Oâ^'O Bond Formation Pathways by Different Aggregation Patterns. Angewandte Chemie, 2016, 128, 6337-6342.	1.6	10
362	Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. Biomacromolecules, 2018, 19, 2750-2758.	2.6	10
363	Hand-in-hand quantum dot assembly sensitized photocathodes for enhanced photoelectrochemical hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 26098-26104.	5.2	10
364	Controllable <i>$Z/E>-selective synthesis of α-amino-ketoximes from N-nitrososulfonamides and aryl alkenes under neutral conditions. Organic Chemistry Frontiers, 2021, 8, 5785-5792.$</i>	2.3	10
365	Direct C(<i>sp</i>)–H/Si–H Cross-Coupling via Copper Salts Photocatalysis. Organic Letters, 2022, 24, 5192-5196.	2.4	10
366	Switch between charge transfer and local excited states in 4-aminophenyl-substituted Hantzsch 1,4-dihydropyridine induced by pH change and transition metal ions. Photochemical and Photobiological Sciences, 2006, 5, 943.	1.6	9
367	Nafionâ€induced metalâ€metal interactions in a platinum(II) terpyridyl acetylide complex: A luminescent sensor for detection of volatile organic compounds. Chinese Journal of Chemistry, 2004, 22, 1204-1207.	2.6	9
368	Perâ€6â€Thiolâ€Cyclodextrin Engineered [FeFe]â€Hydrogenase Mimic/CdSe Quantum Dot Assembly for Photocatalytic Hydrogen Production. Solar Rrl, 2021, 5, 2000474.	3.1	9
369	Bioinspired Selective Synthesis of Heterodimer 8–5′ or 8– <i>O</i> àê"4′ Neolignan Analogs. Organic Letters, 2021, 23, 2816-2820.	2.4	9
370	Diastereodifferentiating photodimerization of alkyl 2-naphthoates with chiral auxiliaries. Tetrahedron Letters, 2009, 50, 4965-4968.	0.7	8
371	Supramolecular complexation and photocyclodimerization of methyl 3-methoxy-2-naphthoate with modified \hat{l}^3 -cyclodextrins. Pure and Applied Chemistry, 2011, 83, 769-778.	0.9	8
372	Graphene-supported small-sized palladium nanoparticles made byÂfacile photochemical approaches. Tetrahedron, 2014, 70, 6188-6192.	1.0	8
373	Chemo- and Regioselective Synthesis of Alkynyl Cyclobutanes by Visible Light Photocatalysis. Organic Letters, 2018, 20, 6808-6811.	2.4	8
374	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angewandte Chemie, 2021, 133, 21896-21899.	1.6	8
375	A simple, modular synthesis of bifunctional peptide-polynorbornenes for apoptosis induction and fluorescence imaging of cancer cells. Polymer Chemistry, 2018, 9, 77-86.	1.9	8
376	Synthesis and Luminescent Properties of an Acetylideâ€Bridged Dinuclear Platinum(II) Terpyridyl Complex. Chinese Journal of Chemistry, 2004, 22, 114-116.	2.6	7
377	Light-driven hydrogen evolution system with glutamic-acid-modified zinc porphyrin as photosensitizer and [FeFe]-hydrogenase model as catalyst. Pure and Applied Chemistry, 2013, 85, 1405-1413.	0.9	7
378	A modular designed copolymer with anti-thrombotic activity and imaging capability. Chemical Communications, 2014, 50, 9539-9542.	2.2	7

#	Article	IF	Citations
379	Photocatalytic hydrogen evolution of 1-tetralones to α-naphthols by continuous-flow technology. Catalysis Science and Technology, 2019, 9, 3337-3341.	2.1	7
380	Benzyl C-O and C-N Bond Construction via C-C Bond Dissociation of Oxime Ester under Visible Light Irradiation. European Journal of Organic Chemistry, 2020, 2020, 1551-1558.	1.2	7
381	Ultrafast Vibrational Energy Transfer through the Covalent Bond and Intra- and Intermolecular Hydrogen Bonds in a Supramolecular Dimer by Two-Dimensional Infrared Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 544-555.	1.2	7
382	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie, 2020, 132, 23662-23666.	1.6	7
383	Palladium-Catalyzed Desymmetric Intermolecular C–N Coupling Enabled by a Chiral Monophosphine Ligand Derived from Anthracene Photodimer. Organic Letters, 2021, 23, 5485-5490.	2.4	7
384	Probe Binding Mode and Structure of the Photocatalytic Center: Hydrogen Generation by Quantum Dots and Nickel Ions. Energy & Samp; Fuels, 2021, 35, 19185-19190.	2.5	7
385	Synthesis of Diazacrown Ethers with Chromophores and Their Photoinduced Chargeâ€Separation with Methyl Viologen. Chinese Journal of Chemistry, 2001, 19, 960-965.	2.6	6
386	Switchable two-photon imaging of RGD-functionalized polynorbornenes with enhanced cellular uptake in living cells. New Journal of Chemistry, 2016, 40, 3252-3260.	1.4	6
387	Dual-responsive vesicles formed by an amphiphile containing two tetrathiafulvalene units in aqueous solution. Organic and Biomolecular Chemistry, 2016, 14, 65-68.	1.5	6
388	A beryllium-selective microcantilever sensor modified with benzo-9-crown-3 functionalized polymer brushes. Analytical Methods, 2017, 9, 3356-3360.	1.3	6
389	Enhancement of photoinduced intramolecular cross-cycloaddition of α-(9-anthryl)-ï‰-(1-naphthoyl) end-labeled poly(ethylene glycol) via lipophobic interactions and complexation with metal cations. Tetrahedron Letters, 2001, 42, 9249-9252.	0.7	5
390	Photocontrollable ion transport across a liquid membrane by anthracene end-labeled oligo-oxyethylenesElectronic supplementary information (ESI) available: IR, 1H NMR and mass spectral data of A-P4-A, A-P5-A, and A-P6-A. See http://www.rsc.org/suppdata/cp/b2/b203647a/. Physical Chemistry Chemical Physics, 2002, 4, 4030-4035.	1.3	5
391	A comparative study on photosensitized oxidation of trans -2-vinylthiophenes with trans -3-vinylthiophenes. Tetrahedron Letters, 2002, 43, 6633-6636.	0.7	5
392	Selective Transport of Alkaliâ€Metal Cations through Liquid Membranes by Nonâ€Cyclic Carriers. Chinese Journal of Chemistry, 2002, 20, 90-95.	2.6	5
393	A Novel Proton Sensor with Luminescence and Color Signaling Based on Platinum(II) Terpyridyl Acetylide Complex. Chinese Journal of Chemistry, 2004, 22, 1-3.	2.6	5
394	The first intramolecular charge transfer transition based on 2â€ureidoâ€4[1 <i>H</i>]â€pyrimidinone binding module. Chinese Journal of Chemistry, 2004, 22, 1391-1394.	2.6	5
395	Stereoselective photodimerization of alkyl 3-alkoxyl-2-naphthoates. Tetrahedron Letters, 2011, 52, 2946-2949.	0.7	5
396	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie, 2016, 128, 15176-15181.	1.6	5

#	Article	IF	Citations
397	Synthesis, Characterization, and Selective Sr ²⁺ Sensing Study of Copper(I)â€Bridged Calix[4]areneâ€Based Binuclear Alkynylplatinum(II) Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 5108-5113.	1.0	5
398	Filamentous Virus Oriented Pyrene Excimer Emission and Its Efficient Energy Transfer. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 32-37.	2.0	5
399	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. Angewandte Chemie, 2019, 131, 8531-8535.	1.6	5
400	Catalytic Hydrogen Production Using A Cobalt Catalyst Bearing a Phosphinoamine Ligand. ChemPhotoChem, 2019, 3, 220-224.	1.5	5
401	Silica-supported dual-dye nanoprobes for ratiometric hypoxia sensing. Materials Chemistry Frontiers, 2021, 5, 458-464.	3.2	5
402	Chiral Inductions in Excited State Reactions: Photodimerization of Alkyl 2â€Naphthoates as a Model. Photochemistry and Photobiology, 2019, 95, 24-32.	1.3	4
403	Semiconductor nanoparticles photocatalyze precise organic cycloaddition. CheM, 2021, 7, 842-844.	5.8	4
404	Reductive Carbon arbon Coupling on Metal Sites Regulates Photocatalytic CO2 Reduction in Water Using ZnSe Quantum Dots. Angewandte Chemie, 0, , .	1.6	4
405	Energy transfer of ionic dyes in mixed surfactant vesicle. Research on Chemical Intermediates, 2000, 26, 575-585.	1.3	3
406	Photoelectric properties of Cz-Py-MV2+ monolayer films. Research on Chemical Intermediates, 2002, 28, 517-526.	1.3	3
407	Synthesis of diastereometrically pure cubane-like photodimers from 2,4-pentanediyl-bis-2-naphthoates. Photochemical and Photobiological Sciences, 2014, 13, 261-265.	1.6	3
408	Conformationâ€Controlled Diplatinum(II)–Ferrocene Dyads to Achieve Longâ€Lived Chargeâ€Separated States. Chemistry - A European Journal, 2016, 22, 11962-11966.	1.7	3
409	Solution-processable graphenes by covalent functionalization of graphene oxide with polymeric monoamines. Science China Chemistry, 2016, 59, 1018-1024.	4.2	3
410	Holeâ€Transferâ€Layer Modification of Quantum Dotâ€Sensitized Photocathodes for Dramatically Enhanced Hydrogen Evolution. Particle and Particle Systems Characterization, 2018, 35, 1700278.	1.2	3
411	Aggregation-Enabled Intermolecular Photo[2+2]cycloaddition of Aryl Terminal Olefins by Visible-Light Catalysis. CCS Chemistry, 2020, 2, 582-588.	4.6	3
412	Semi-artificial photoelectrochemical synthesis. Joule, 2021, 5, 2771-2773.	11.7	3
413	An attempt to determine the polarity of bilayer of cationic and anionic surfactants vesicle: A chemical probe technique study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 304, 31-35.	2.3	2
414	Mechanistic Insights Into Iron(II) Bis(pyridyl)amineâ€Bipyridine Skeleton for Selective CO2 Photoreduction. Angewandte Chemie, 0, , .	1.6	2

#	Article	IF	Citations
415	A Conjugated Figureâ€ofâ€eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angewandte Chemie, 2022, 134, e202113334.	1.6	2
416	Versatile Photosensitization System for 102-Mediated Oxidation of Alkenes Based on Nafion-Supported Platinum(II) Terpyridyl Acetylide Complex ChemInform, 2003, 34, no.	0.1	1
417	Photocatalysis: An Exceptional Artificial Photocatalyst, Ni _h dSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution (Adv. Mater.) Tj ETQq1 I	1 0.17.8 431	4 i gBT /Over
418	Self-assembled vesicles from amphiphilic platinum(II) terpyridyl complex in water. Supramolecular Chemistry, 2015, 27, 298-302.	1.5	1
419	Supramolecular Systems as Microreactors: Control of Product Selectivity in Organic Phototransformation. ChemInform, 2003, 34, no.	0.1	0
420	Excited-state absorption and two-photon-induced fluorescence of novel organic dyes. , 2003, , .		0
421	Hydrogen Bonding-Controlled Photoinduced Electron and Energy Transfer. Lecture Notes in Quantum Chemistry II, 2015, , 1-42.	0.3	0
422	Chen-Ho Tung and his research on supramolecular photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 2-8.	2.0	0
423	Light-Manipulated Spatiotemporal Electrochemiluminescence: A Smart Toolkit for Redox Imaging. Matter, 2020, 3, 615-616.	5.0	0