Jacobus J Van Franeker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12034775/publications.pdf

Version: 2024-02-01

		567281	940533	
16	1,526 citations	15	16	
papers	citations	h-index	g-index	
16	16	16	3187	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. ACS Nano, 2015, 9, 9380-9393.	14.6	451
2	A real-time study of the benefits of co-solvents in polymer solar cell processing. Nature Communications, 2015, 6, 6229.	12.8	287
3	Polymer Solar Cells: Solubility Controls Fiber Network Formation. Journal of the American Chemical Society, 2015, 137, 11783-11794.	13.7	133
4	Wideâ€Bandgap Benzodithiophene–Benzothiadiazole Copolymers for Highly Efficient Multijunction Polymer Solar Cells. Advanced Materials, 2015, 27, 4461-4468.	21.0	99
5	2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 2346-2354.	10.3	92
6	Effect of side chain length on the charge transport, morphology, and photovoltaic performance of conjugated polymers in bulk heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 1855-1866.	10.3	74
7	Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation in Organic Solar Cells. Journal of the American Chemical Society, 2016, 138, 10026-10031.	13.7	67
8	Monitoring Thermal Annealing of Perovskite Solar Cells with In Situ Photoluminescence. Advanced Energy Materials, 2017, 7, 1601822.	19.5	59
9	Controlling the Dominant Length Scale of Liquid–Liquid Phase Separation in Spinâ€coated Organic Semiconductor Films. Advanced Functional Materials, 2015, 25, 855-863.	14.9	52
10	Depositing Fullerenes in Swollen Polymer Layers via Sequential Processing of Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1500464.	19.5	48
11	Subâ€Micrometer Structure Formation during Spin Coating Revealed by Timeâ€Resolved In Situ Laser and Xâ€Ray Scattering. Advanced Functional Materials, 2017, 27, 1702516.	14.9	35
12	Simulating Phase Separation during Spin Coating of a Polymer–Fullerene Blend: A Joint Computational and Experimental Investigation. ACS Applied Energy Materials, 2018, 1, 725-735.	5.1	34
13	High open circuit voltage polymer solar cells enabled by employing thiazoles in semiconducting polymers. Polymer Chemistry, 2016, 7, 5730-5738.	3.9	32
14	Structure–property relationships for bis-diketopyrrolopyrrole molecules in organic photovoltaics. Journal of Materials Chemistry A, 2016, 4, 10532-10541.	10.3	30
15	Energy Level Tuning of Poly(phenyleneâ€ <i>altâ€</i> dithienobenzothiadiazole)s for Low Photon Energy Loss Solar Cells. Macromolecular Chemistry and Physics, 2017, 218, 1600502.	2.2	19
16	The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells. Chemical Communications, 2016, 52, 92-95.	4.1	14