Michela Schiavon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12032887/publications.pdf

Version: 2024-02-01

51 4,045 31 50 papers citations h-index g-index

53 53 53 3696
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Tomato plant responses induced by sparingly available inorganic and organic phosphorus forms are modulated by strigolactones. Plant and Soil, 2022, 474, 355-372.	3.7	9
2	Hyperaccumulator Stanleya pinnata: In Situ Fitness in Relation to Tissue Selenium Concentration. Plants, 2022, 11, 690.	3.5	6
3	Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules, 2021, 26, 2256.	3.8	121
4	The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants, 2021, 10, 1031.	5.1	11
5	Strigolactones affect phosphorus acquisition strategies in tomato plants. Plant, Cell and Environment, 2021, 44, 3628-3642.	5.7	17
6	Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant and Soil, 2020, 453, 245-270.	3.7	138
7	Selected Plant-Related Papers from the First Joint Meeting on Soil and Plant System Sciences (SPSS) Tj ETQq1 19, 1132.	0.784314 3 . 5	4 rgBT /Overloc 1
8	Bioactivity of Size-Fractionated and Unfractionated Humic Substances From Two Forest Soils and Comparative Effects on N and S Metabolism, Nutrition, and Root Anatomy of Allium sativum L. Frontiers in Plant Science, 2020, 11, 1203.	3.6	29
9	Strigolactones Control Root System Architecture and Tip Anatomy in Solanum lycopersicum L. Plants under P Starvation. Plants, 2020, 9, 612.	3.5	29
10	Selenium Interactions with Algae: Chemical Processes at Biological Uptake Sites, Bioaccumulation, and Intracellular Metabolism. Plants, 2020, 9, 528.	3.5	31
11	Effects of Two Protein Hydrolysates Obtained From Chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) Plants. Frontiers in Plant Science, 2019, 10, 954.	3.6	32
12	Metabolite-Targeted Analysis and Physiological Traits of Zea mays L. in Response to Application of a Leonardite-Humate and Lignosulfonate-Based Products for Their Evaluation as Potential Biostimulants. Agronomy, 2019, 9, 445.	3.0	29
13	Selenium Biofortification Differentially Affects Sulfur Metabolism and Accumulation of Phytochemicals in Two Rocket Species (Eruca Sativa Mill. and Diplotaxis Tenuifolia) Grown in Hydroponics. Plants, 2019, 8, 68.	3 . 5	35
14	Manure Fertilization Gives High-Quality Earthworm Coprolites with Positive Effects on Plant Growth and N Metabolism. Agronomy, 2019, 9, 659.	3.0	8
15	Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2343-2353.	2.4	70
16	Transcriptomeâ€wide comparison of selenium hyperaccumulator and nonaccumulator <i>Stanleya</i> species provides new insight into key processes mediating the hyperaccumulation syndrome. Plant Biotechnology Journal, 2018, 16, 1582-1594.	8.3	67
17	Comparison of ATP sulfurylase 2 from selenium hyperaccumulator Stanleya pinnata and non-accumulator Stanleya elata reveals differential intracellular localization and enzyme activity levels. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2363-2371.	2.4	14
18	Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. New Phytologist, 2018, 217, 194-205.	7.3	88

#	Article	IF	Citations
19	Spectroscopic-Chemical Fingerprint and Biostimulant Activity of a Protein-Based Product in Solid Form. Molecules, 2018, 23, 1031.	3.8	22
20	Evaluation of Seaweed Extracts From Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches. Frontiers in Plant Science, 2018, 9, 428.	3.6	132
21	Biostimulant Potential of Humic Acids Extracted From an Amendment Obtained via Combination of Olive Mill Wastewaters (OMW) and a Pre-treated Organic Material Derived From Municipal Solid Waste (MSW). Frontiers in Plant Science, 2018, 9, 1028.	3.6	37
22	Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. Journal of Environmental Quality, 2017, 46, 10-19.	2.0	108
23	Effects of Selenium on Plant Metabolism and Implications for Crops and Consumers. Plant Ecophysiology, 2017, , 257-275.	1.5	36
24	Biochemistry of Plant Selenium Uptake and Metabolism. Plant Ecophysiology, 2017, , 21-34.	1.5	22
25	Selenium accumulation and metabolism in algae. Aquatic Toxicology, 2017, 189, 1-8.	4.0	101
26	The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytologist, 2017, 213, 1582-1596.	7.3	282
27	Different leachate phytotreatment systems using sunflowers. Waste Management, 2017, 59, 267-275.	7.4	14
28	Transcriptome-Wide Identification of Differentially Expressed Genes in Solanum lycopersicon L. in Response to an Alfalfa-Protein Hydrolysate Using Microarrays. Frontiers in Plant Science, 2017, 8, 1159.	3.6	101
29	Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 2016, 73, 18-23.	1.2	253
30	Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids. Frontiers in Plant Science, 2016, 7, 1371.	3.6	81
31	Comparative effects of selenate and selenite on selenium accumulation, morphophysiology, and glutathione synthesis in Ulva australis. Environmental Science and Pollution Research, 2016, 23, 15023-15032.	5.3	19
32	Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulationââ,¬â€a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Frontiers in Plant Science, 2015, 6, 2.	3.6	97
33	The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chemical and Biological Technologies in Agriculture, 2015, 2, .	4.6	45
34	Effects of selenium biofortification on crop nutritional quality. Frontiers in Plant Science, 2015, 6, 280.	3.6	159
35	Effect of an Alfalfa Plant-Derived Biostimulant on Sulfur Nutrition in Tomato Plants. Proceedings of the International Plant Sulfur Workshop, 2015, , 215-220.	0.1	2
36	Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea. Environmental Science and Pollution Research, 2015, 22, 2423-2433.	5.3	24

3

#	Article	IF	CITATIONS
37	Potential for phytoextraction of copper by Sinapis alba and Festuca rubra cv. Merlin grown hydroponically and in vineyard soils. Environmental Science and Pollution Research, 2014, 21, 3294-3303.	5.3	7
38	Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant and Soil, 2013, 364, 145-158.	3.7	233
39	Selenium Fertilization Alters the Chemical Composition and Antioxidant Constituents of Tomato (Solanum lycopersicon L.). Journal of Agricultural and Food Chemistry, 2013, 61, 10542-10554.	5.2	138
40	Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites. Aquatic Toxicology, 2012, 122-123, 222-231.	4.0	78
41	Transcriptome profiling of genes differentially modulated by sulfur and chromium identifies potential targets for phytoremediation and reveals a complex S–Cr interplay on sulfate transport regulation in B. juncea. Journal of Hazardous Materials, 2012, 239-240, 192-205.	12.4	36
42	Phenolâ€containing organic substances stimulate phenylpropanoid metabolism in <i>Zea mays</i> Journal of Plant Nutrition and Soil Science, 2011, 174, 496-503.	1.9	79
43	High Molecular Size Humic Substances Enhance Phenylpropanoid Metabolism in Maize (Zea mays L.). Journal of Chemical Ecology, 2010, 36, 662-669.	1.8	168
44	Physiological functions of beneficial elements. Current Opinion in Plant Biology, 2009, 12, 267-274.	7.1	602
45	Role of Sulfate and S-Rich Compounds in Heavy Metal Tolerance and Accumulation. , 2008, , 253-269.		6
46	Effects of an Alfalfa Protein Hydrolysate on the Gene Expression and Activity of Enzymes of the Tricarboxylic Acid (TCA) Cycle and Nitrogen Metabolism in Zea mays L Journal of Agricultural and Food Chemistry, 2008, 56, 11800-11808.	5.2	142
47	Heavy Metal Tolerance and Accumulation in Indian Mustard (<i>Brassica Juncea</i> L.) Expressing Bacterial Î ³ -Glutamylcysteine Synthetase or Glutathione Synthetase. International Journal of Phytoremediation, 2008, 10, 440-454.	3.1	93
48	Interactions between Chromium and Sulfur Metabolism in <i>Brassica juncea</i> Environmental Quality, 2008, 37, 1536-1545.	2.0	90
49	Phytoremediation of chromium using Salix species: Cloning ESTs and candidate genes involved in the Cr response. Gene, 2007, 402, 68-80.	2.2	42
50	Investigation of selenium tolerance mechanisms in Arabidopsis thaliana. Physiologia Plantarum, 2006, 128, 212-223.	5.2	33
51	Variation in copper tolerance in Arabidopsis thaliana accessions Columbia, Landsberg erecta and Wassilewskija. Physiologia Plantarum, 2006, 129, 342-350.	5.2	27