
Ricardo RodrÃ-guez-Calvo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1203258/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unveiling the Role of the Fatty Acid Binding Protein 4 in the Metabolic-Associated Fatty Liver Disease. Biomedicines, 2022, 10, 197.	3.2	12
2	Low-density lipoprotein from active SLE patients is more atherogenic to endothelial cells than low-density lipoprotein from the same patients during remission. Rheumatology, 2021, 60, 866-871.	1.9	4
3	Altered Serum Metabolic Profile Assessed by Advanced 1H-NMR in Breast Cancer Patients. Cancers, 2021, 13, 4281.	3.7	5
4	Triglyceride-Rich Lipoproteins and Glycoprotein A and B Assessed by 1H-NMR in Metabolic-Associated Fatty Liver Disease. Frontiers in Endocrinology, 2021, 12, 775677.	3.5	4
5	Relationship Between Fatty Acid Binding Protein 4 and Liver Fat in Individuals at Increased Cardiometabolic Risk. Frontiers in Physiology, 2021, 12, 781789.	2.8	5
6	Hepatic Lipidomics and Molecular Imaging in a Murine Non-Alcoholic Fatty Liver Disease Model: Insights into Molecular Mechanisms. Biomolecules, 2020, 10, 1275.	4.0	9
7	Plasma glucose, triglycerides, VLDL, leptin and resistin levels as potential biomarkers for myocardial fat in mice. ClĀnica E Investigación En Arteriosclerosis (English Edition), 2020, 32, 8-14.	0.2	1
8	Niveles plasmáticos de glucosa, triglicéridos, VLDL, leptina y resistina como potenciales biomarcadores de la grasa miocárdica en ratones. ClẤnica E Investigación En Arteriosclerosis, 2020, 32, 8-14.	0.8	4
9	The Circulating GRP78/BiP Is a Marker of Metabolic Diseases and Atherosclerosis: Bringing Endoplasmic Reticulum Stress into the Clinical Scenario. Journal of Clinical Medicine, 2019, 8, 1793.	2.4	40
10	Fatty acid binding protein 4 (FABP4) as a potential biomarker reflecting myocardial lipid storage in type 2 diabetes. Metabolism: Clinical and Experimental, 2019, 96, 12-21.	3.4	35
11	Fluorescent labelling of membrane fatty acid transporter CD36 (SR-B2) in the extracellular loop. PLoS ONE, 2019, 14, e0210704.	2.5	5
12	Review of the scientific evolution of gene therapy for the treatment of homozygous familial hypercholesterolaemia: past, present and future perspectives. Journal of Medical Genetics, 2019, 56, 711-717.	3.2	10
13	Extracellular FABP4 uptake by endothelial cells is dependent on cytokeratin 1 expression. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 234-244.	2.4	13
14	Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels—The zero-LDL hypothesis. Journal of Clinical Lipidology, 2018, 12, 292-299.e3.	1.5	51
15	FABP4 inhibitor BMS309403 decreases saturated-fatty-acid-induced endoplasmic reticulum stress-associated inflammation in skeletal muscle by reducing p38 MAPK activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 604-613.	2.4	33
16	The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opinion on Therapeutic Targets, 2017, 21, 291-304.	3.4	96
17	Small heterodimer partner (SHP) contributes to insulin resistance in cardiomyocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 541-551.	2.4	10
18	Role of the fatty acid-binding protein 4 in heart failure and cardiovascular disease. Journal of Endocrinology, 2017, 233, R173-R184.	2.6	86

#	Article	IF	CITATIONS
19	The nuclear receptor NOR-1 regulates the small muscle protein, X-linked (SMPX) and myotube differentiation. Scientific Reports, 2016, 6, 25944.	3.3	16
20	Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells. Atherosclerosis, 2016, 249, 191-199.	0.8	34
21	NR4A receptors up-regulate the antiproteinase alpha-2 macroglobulin (A2M) and modulate MMP-2 and MMP-9 in vascular smooth muscle cells. Thrombosis and Haemostasis, 2015, 113, 1323-1334.	3.4	39
22	AICAR Protects against High Palmitate/High Insulin-Induced Intramyocellular Lipid Accumulation and Insulin Resistance in HL-1 Cardiac Cells by Inducing PPAR-Target Gene Expression. PPAR Research, 2015, 2015, 1-12.	2.4	12
23	NOR-1 modulates the inflammatory response of vascular smooth muscle cells by preventing NFήB activation. Journal of Molecular and Cellular Cardiology, 2015, 80, 34-44.	1.9	39
24	Lysyl oxidase (LOX) in vascular remodelling. Thrombosis and Haemostasis, 2014, 112, 812-824.	3.4	26
25	Inactivation of Nuclear Factor-Y Inhibits Vascular Smooth Muscle Cell Proliferation and Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1036-1045.	2.4	12
26	Over-expression of Neuron-derived Orphan Receptor-1 (NOR-1) exacerbates neointimal hyperplasia after vascular injury. Human Molecular Genetics, 2013, 22, 1949-1959.	2.9	46
27	The PPARβ/δ Activator GW501516 Prevents the Down-Regulation of AMPK Caused by a High-Fat Diet in Liver and Amplifies the PGC-1α-Lipin 1-PPARα Pathway Leading to Increased Fatty Acid Oxidation. Endocrinology, 2011, 152, 1848-1859.	2.8	136
28	PPARβ/δ activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 59-67.	2.4	66
29	Type II interleukin-1 receptor expression is reduced in monocytes/macrophages and atherosclerotic lesions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 556-563.	2.4	25
30	Angiotensin II differentially modulates cyclooxygenase-2, microsomal prostaglandin E2 synthase-1 and prostaglandin I2 synthase expression in adventitial fibroblasts exposed to inflammatory stimuli. Journal of Hypertension, 2011, 29, 529-536.	0.5	10
31	Activation of Peroxisome Proliferator–Activated Receptor-β/-δ (PPAR-β/-Î) Ameliorates Insulin Signaling and Reduces SOCS3 Levels by Inhibiting STAT3 in Interleukin-6–Stimulated Adipocytes. Diabetes, 2011, 60, 1990-1999.	0.6	64
32	CCL20 Is Increased in Hypercholesterolemic Subjects and Is Upregulated By LDL in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2733-2741.	2.4	47
33	Fibulin-5 Is Up-regulated by Hypoxia in Endothelial Cells through a Hypoxia-inducible Factor-1 (HIF-1α)-dependent Mechanism. Journal of Biological Chemistry, 2011, 286, 7093-7103.	3.4	57
34	Peroxisome Proliferator-Activated Receptor (PPAR)β /δ: A New Potential Therapeutic Target for the Treatment of Metabolic Syndrome. Current Molecular Pharmacology, 2009, 2, 46-55.	1.5	60
35	Modulation of Endothelium and Endothelial Progenitor Cell Function by Low-Density Lipoproteins: Implication for Vascular Repair, Angiogenesis and Vasculogenesis. Pathobiology, 2009, 76, 11-22.	3.8	22
36	TNF-α reduces PGC-1α expression through NF-κB and p38 MAPK leading to increased glucose oxidation in a human cardiac cell model. Cardiovascular Research, 2009, 81, 703-712.	3.8	147

#	Article	IF	CITATIONS
37	Matrix Metalloproteinase-10 Is Upregulated by Thrombin in Endothelial Cells and Increased in Patients With Enhanced Thrombin Generation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 2109-2116.	2.4	42
38	Atorvastatin prevents carbohydrate response element binding protein activation in the fructose-fed rat by activating protein kinase A. Hepatology, 2009, 49, 106-115.	7.3	58
39	Activation of Peroxisome Proliferator–Activated Receptor β/δ Inhibits Lipopolysaccharide-Induced Cytokine Production in Adipocytes by Lowering Nuclear Factor-κB Activity via Extracellular Signal–Related Kinase 1/2. Diabetes, 2008, 57, 2149-2157.	0.6	108
40	Atorvastatin inhibits GSK-3β phosphorylation by cardiac hypertrophic stimuli. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 26-35.	2.4	17
41	Oleate Reverses Palmitate-induced Insulin Resistance and Inflammation in Skeletal Muscle Cells. Journal of Biological Chemistry, 2008, 283, 11107-11116.	3.4	285
42	Peroxisome Proliferator-Activated Receptor Down-Regulation Is Associated With Enhanced Ceramide Levels in Age-Associated Cardiac Hypertrophy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1326-1336.	3.6	26
43	PGC-1ss Down-Regulation Is Associated With Reduced ERRÂ Activity and MCAD Expression in Skeletal Muscle of Senescence-Accelerated Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 773-780.	3.6	32
44	Ageing introduces a complex pattern of changes in several rat brain transcription factors depending on gender and anatomical localization. Experimental Gerontology, 2006, 41, 372-379.	2.8	9
45	Inhibition of Cardiac Hypertrophy by Triflusal (4-Trifluoromethyl Derivative of Salicylate) and Its Active Metabolite. Molecular Pharmacology, 2006, 69, 1174-1181.	2.3	6
46	Palmitate-Mediated Downregulation of Peroxisome Proliferator–Activated Receptor-γ Coactivator 1α in Skeletal Muscle Cells Involves MEK1/2 and Nuclear Factor-κB Activation. Diabetes, 2006, 55, 2779-2787.	0.6	134
47	Increased Akt protein expression is associated with decreased ceramide content in skeletal muscle of troglitazone-treated mice. Biochemical Pharmacology, 2005, 69, 1195-1204.	4.4	32
48	Peroxisome proliferator-activated receptor ?/? activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovascular Research, 2005, 65, 832-841.	3.8	154