Kae Won Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1203059/publications.pdf Version: 2024-02-01

KAE WON CHO

#	Article	IF	CITATIONS
1	Adipose Tissue Macrophages Function As Antigen-Presenting Cells and Regulate Adipose Tissue CD4+ T Cells in Mice. Diabetes, 2013, 62, 2762-2772.	0.6	185
2	Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Molecular Metabolism, 2014, 3, 664-675.	6.5	179
3	An MHC II-Dependent Activation Loop between Adipose Tissue Macrophages and CD4+ T Cells Controls Obesity-Induced Inflammation. Cell Reports, 2014, 9, 605-617.	6.4	167
4	Adipose Tissue Dendritic Cells Are Independent Contributors to Obesity-Induced Inflammation and Insulin Resistance. Journal of Immunology, 2016, 197, 3650-3661.	0.8	116
5	Flow Cytometry Analyses of Adipose Tissue Macrophages. Methods in Enzymology, 2014, 537, 297-314.	1.0	106
6	Differences in Hematopoietic Stem Cells Contribute to Sexually Dimorphic Inflammatory Responses to High Fat Diet-induced Obesity. Journal of Biological Chemistry, 2015, 290, 13250-13262.	3.4	92
7	Metabolism and function of polyamines in cancer progression. Cancer Letters, 2021, 519, 91-104.	7.2	52
8	Imaging White Adipose Tissue with Confocal Microscopy. Methods in Enzymology, 2014, 537, 17-30.	1.0	44
9	Lipocalin-13 Regulates Glucose Metabolism by both Insulin-Dependent and Insulin-Independent Mechanisms. Molecular and Cellular Biology, 2011, 31, 450-457.	2.3	37
10	Lipocalin 13 Protein Protects against Hepatic Steatosis by Both Inhibiting Lipogenesis and Stimulating Fatty Acid β-Oxidation. Journal of Biological Chemistry, 2011, 286, 38128-38135.	3.4	34
11	CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity. Journal of Leukocyte Biology, 2016, 99, 1107-1119.	3.3	33
12	miR-218 and miR-129 regulate breast cancer progression by targeting Lamins. Biochemical and Biophysical Research Communications, 2018, 496, 826-833.	2.1	32
13	Macrophage Lamin A/C Regulates Inflammation and the Development of Obesity-Induced Insulin Resistance. Frontiers in Immunology, 2018, 9, 696.	4.8	32
14	Human CD206+ macrophages associate with diabetes and adipose tissue lymphoid clusters. JCI Insight, 2022, 7, .	5.0	24
15	Hepatic SH2B1 and SH2B2 Regulate Liver Lipid Metabolism and VLDL Secretion in Mice. PLoS ONE, 2013, 8, e83269.	2.5	22
16	Adipose Tissue Dendritic Cells: Critical Regulators of Obesity-Induced Inflammation and Insulin Resistance. International Journal of Molecular Sciences, 2021, 22, 8666.	4.1	16
17	Carboxytherapy-Induced Fat loss is Associated with VEGF-Mediated Vascularization. Aesthetic Plastic Surgery, 2018, 42, 1681-1688.	0.9	10
18	A novel role of CRTC2 in promoting nonalcoholic fatty liver disease. Molecular Metabolism, 2022, 55, 101402.	6.5	9

#	Article	IF	CITATIONS
19	Telmisartan mitigates hyperglycemia-induced vascular inflammation by increasing GSK3β-Ser9 phosphorylation in endothelial cells and mouse aortas. Biochemical and Biophysical Research Communications, 2017, 491, 903-911.	2.1	6
20	"Fasting: An Effective Preconditioning Method to Increase Fat Graft Survival― Aesthetic Plastic Surgery, 2021, , 1.	0.9	5
21	Telmisartan increases hepatic glucose production via protein kinase C ζ-dependent insulin receptor substrate-1 phosphorylation in HepC2 cells and mouse liver. Yeungnam University Journal of Medicine, 2019, 36, 26-35.	1.4	3