Milan M JakÅ;ić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12030491/publications.pdf Version: 2024-02-01

Μιι ΑΝ ΜΙΑκΔιιάτ

#	Article	IF	CITATIONS
1	Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory. Journal of Molecular Catalysis, 1986, 38, 161-202.	1.2	100
2	Hypo–hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions. Electrochimica Acta, 2000, 45, 4085-4099.	5.2	100
3	The Electrochemical Activation of Catalytic Reactions. Reviews of Physiology, Biochemistry and Pharmacology, 1996, , 57-202.	1.6	87
4	Advances in interactive supported electrocatalysts for hydrogen and oxygen electrode reactions. Surface Science, 2007, 601, 1949-1966.	1.9	70
5	Electrocatalysis for hydrogen electrode reactions in the light of fermi dynamics and structural bonding FACTORS—I. individual electrocatalytic properties of transition metals. International Journal of Hydrogen Energy, 1998, 23, 1121-1156.	7.1	65
6	Spillover of primary oxides as a dynamic catalytic effect of interactive hypo-d-oxide supports. Electrochimica Acta, 2007, 53, 349-361.	5.2	60
7	Novel Spillover Interrelating Reversible Electrocatalysts for Oxygen and Hydrogen Electrode Reactions. Journal of Physical Chemistry C, 2010, 114, 18298-18312.	3.1	47
8	Mutual Effect of Current Density, pH, Temperature, and Hydrodynamic Factors on Current Efficiency in the Chlorate Cell Process. Journal of the Electrochemical Society, 1974, 121, 70.	2.9	30
9	Fermi dynamics and some structural bonding aspects of electrocatalysis for hydrogen evolution. Electrochimica Acta, 1994, 39, 1695-1714.	5.2	28
10	Spillover Phenomena and Its Striking Impacts in Electrocatalysis for Hydrogen and Oxygen Electrode Reactions. Advances in Physical Chemistry, 2011, 2011, 1-22.	2.0	21
11	Impurity effects on the macromorphology of electrodeposited zinc I: Theoretical considerations and a review of existing knowledge. Surface Technology, 1985, 24, 193-217.	0.4	20
12	Synergetic electrocatalytic effect of d metals for the hydrogen evolution reaction on gold substrates. Surface Technology, 1984, 22, 51-59.	0.4	17
13	Mass transfer and optimization of faradaic yields in a chlorate cell process. Electrochimica Acta, 1976, 21, 1127-1136.	5.2	16
14	Primary Oxide Latent Storage and Spillover Enabling Electrocatalysts with Reversible Oxygen Electrode Properties and the Alterpolar Revertible (PEMFC versus WE) Cell. Journal of Physical Chemistry C, 2014, 118, 8723-8746.	3.1	15
15	Hydrodynamic effects on the macromorphology of electrodeposited zinc and flow visualization. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 249, 35-62.	0.1	13
16	Theory, Substantiation, and Properties of Novel Reversible Electrocatalysts for Oxygen Electrode Reactions. Journal of Physical Chemistry C, 2015, 119, 11267-11285.	3.1	13
17	Impurity effects on the macromorphology of electrodeposited zinc II. Causes, appearances and consequences of spongy zinc growth. Surface and Coatings Technology, 1986, 28, 113-127.	4.8	12
18	Potentiodynamic estimation of key parametric criterions and interrelating reversible spillover effects for electrochemical promotion. Applied Catalysis A: General, 2010, 380, 1-14.	4.3	12

Milan M Jakåiiä‡

#	Article	IF	CITATIONS
19	Hydrodynamic effects on the macromorphology of electrodeposited zinc and flow visualization. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 249, 63-88.	0.1	9
20	Volcanic periodicity plots along transition series, hypo-hyper-d-d-interelectronic correlations and electrocatalysis for hydrogen electrode reactions. Macedonian Journal of Chemistry and Chemical Engineering, 2012, 30, 3.	0.6	9
21	Hydrodynamic effects of surfactants on the macromorphology of electrodeposited zinc and flow visualization. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 243, 21-55.	0.1	7
22	Hydrodynamic flow visualization by an electrochemical method. Experimental Thermal and Fluid Science, 1991, 4, 56-75.	2.7	5
23	Hydrodynamic effects on the macromorphology of electrodeposited zinc and flow visualization: The effect of neutral salts and electric field. Journal of Electroanalytical Chemistry, 1992, 328, 127-151.	3.8	5
24	Individual ionic activities and mass transfer in anodic chlorate formation. Journal of Applied Electrochemistry, 1973, 3, 307-314.	2.9	3
25	Spillover Phenomena in Electrocatalysis for Oxygen and Hydrogen Electrode Reactions. , 2013, , 175-212.		3
26	Primary Oxide Latent Storage and Spillover for Reversible Electrocatalysis in Oxygen and Hydrogen Electrode Reactions. Nanostructure Science and Technology, 2016, , 309-365.	0.1	0