Eugene Y-X Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202904/publications.pdf

Version: 2024-02-01

186 12,132 58 99
papers citations h-index g-index

191 191 191 5912 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bio-based polymers with performance-advantaged properties. Nature Reviews Materials, 2022, 7, 83-103.	48.7	268
2	Closing the "One Monomer–Two Polymers–One Monomer―Loop via Orthogonal (De)polymerization of a Lactone/Olefin Hybrid. Journal of the American Chemical Society, 2022, 144, 2264-2275.	13.7	56
3	Sustainable nanofiltration membranes based on biosourced fully recyclable polyesters and green solvents. , 2022, 2, 100016.		16
4	Mechanism of Spatial and Temporal Control in Precision Cyclic Vinyl Polymer Synthesis by Lewis Pair Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
5	Electrochemical Activation of Câ^'C Bonds through Mediated Hydrogen Atom Transfer Reactions. ChemSusChem, 2022, 15, .	6.8	15
6	Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability. Journal of the American Chemical Society, 2022, 144, 5366-5376.	13.7	53
7	Critical advances and future opportunities in upcycling commodity polymers. Nature, 2022, 603, 803-814.	27.8	404
8	Modulating the Crystallinity of a Circular Plastic towards Packaging Material with Outstanding Barrier Properties. Macromolecular Rapid Communications, 2022, , 2200008.	3.9	0
9	Oneâ€Step Synthesis of Ligninâ€Based Triblock Copolymers as Highâ€Temperature and UVâ€Blocking Thermoplastic Elastomers. Angewandte Chemie - International Edition, 2022, 61, e202114946.	13.8	36
10	Synchronous Control of Chain Length/Sequence/Topology for Precision Synthesis of Cyclic Block Copolymers from Monomer Mixtures. Journal of the American Chemical Society, 2021, 143, 3318-3322.	13.7	64
11	Hybrid monomer design for unifying conflicting polymerizability, recyclability, and performance properties. CheM, 2021, 7, 670-685.	11.7	83
12	Toward a circular economy for plastics. One Earth, 2021, 4, 591-594.	6.8	5
13	Thermomechanical activation achieving orthogonal working/healing conditions of nanostructured tri-block copolymer thermosets. Cell Reports Physical Science, 2021, 2, 100483.	5.6	14
14	Dual-initiating and living frustrated Lewis pairs: expeditious synthesis of biobased thermoplastic elastomers. Nature Communications, 2021, 12, 4874.	12.8	28
15	Toughening Biodegradable Isotactic Poly(3-hydroxybutyrate) via Stereoselective Copolymerization of a Diolide and Lactones. Macromolecules, 2021, 54, 9401-9409.	4.8	25
16	Design principles for intrinsically circular polymers with tunable properties. CheM, 2021, 7, 2896-2912.	11.7	79
17	Catalyzed Chemical Synthesis of Unnatural Aromatic Polyhydroxyalkanoate and Aromatic–Aliphatic PHAs with Record-High Glass-Transition and Decomposition Temperatures. Macromolecules, 2020, 53, 9906-9915.	4.8	19
18	High-performance pan-tactic polythioesters with intrinsic crystallinity and chemical recyclability. Science Advances, 2020, 6, eabc0495.	10.3	101

#	Article	IF	CITATIONS
19	Compounded Sequence Control in Polymerization of One-Pot Mixtures of Highly Reactive Acrylates by Differentiating Lewis Pairs. Journal of the American Chemical Society, 2020, 142, 5969-5973.	13.7	59
20	High chemical recyclability of vinyl lactone acrylic bioplastics. Polymer Chemistry, 2020, 11, 4942-4950.	3.9	25
21	Lewis Pair Polymerization: Perspective on a Ten-Year Journey. Macromolecules, 2020, 53, 6102-6122.	4.8	91
22	Biodegradable Polyhydroxyalkanoates by Stereoselective Copolymerization of Racemic Diolides: Stereocontrol and Polyolefin‣ike Properties. Angewandte Chemie, 2020, 132, 7955-7964.	2.0	9
23	Lewis Pair Polymerization of Renewable Indenone to Erythro-Ditactic High- <i>T</i> _g Polymers with an Upcycling Avenue. Macromolecules, 2020, 53, 640-648.	4.8	20
24	Biodegradable Polyhydroxyalkanoates by Stereoselective Copolymerization of Racemic Diolides: Stereocontrol and Polyolefin‣ike Properties. Angewandte Chemie - International Edition, 2020, 59, 7881-7890.	13.8	56
25	Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nature Communications, 2019, 10, 3559.	12.8	245
26	Diverse Catalytic Systems and Mechanistic Pathways for Hydrosilylative Reduction of CO ₂ . ChemSusChem, 2019, 12, 4543-4569.	6.8	55
27	Stereosequenced crystalline polyhydroxyalkanoates from diastereomeric monomer mixtures. Science, 2019, 366, 754-758.	12.6	125
28	All-Methacrylic Stereoregular Triblock Co-polymer Thermoplastic Elastomers Toughened by Supramolecular Stereocomplexation. Macromolecules, 2019, 52, 7313-7323.	4.8	9
29	Regioselective Hydrogenation of Itaconic Acid to γâ€Isovalerolactone by Transitionâ€Metal Nanoparticle Catalysts. ChemSusChem, 2019, 12, 973-977.	6.8	4
30	Closed-Loop Polymer Upcycling by Installing Property-Enhancing Comonomer Sequences and Recyclability. Macromolecules, 2019, 52, 4570-4578.	4.8	42
31	Aluminium(<scp>iii</scp>) dialkyl 2,6-bisimino-4 <i>R</i> -dihydropyridinates(â^'1): selective synthesis, structure and controlled dimerization. Dalton Transactions, 2019, 48, 9104-9116.	3.3	4
32	Difuranic Diols for Renewable Polymers with Pendent Furan Rings. ACS Sustainable Chemistry and Engineering, 2019, 7, 7035-7046.	6.7	20
33	Selective or living organopolymerization of a six-five bicyclic lactone to produce fully recyclable polyesters. Polymer Chemistry, 2019, 10, 3097-3106.	3.9	42
34	Future Directions for Sustainable Polymers. Trends in Chemistry, 2019, 1, 148-151.	8.5	146
35	Borane/silane frustrated Lewis pairs for polymerization of \hat{l}^2 -substituted Michael acceptors. Tetrahedron, 2019, 75, 1475-1480.	1.9	11
36	Catalystâ€Sidearmâ€Induced Stereoselectivity Switching in Polymerization of a Racemic Lactone for Stereocomplexed Crystalline Polymer with a Circular Life Cycle. Angewandte Chemie, 2019, 131, 1190-1194.	2.0	24

#	Article	IF	CITATIONS
37	Toward Infinitely Recyclable Plastics Derived from Renewable Cyclic Esters. CheM, 2019, 5, 284-312.	11.7	239
38	Thermally Regulated Recyclable Carbene Catalysts for Upgrading of Biomass Furaldehydes. ACS Sustainable Chemistry and Engineering, 2019, 7, 1980-1988.	6.7	15
39	Catalystâ€Sidearmâ€Induced Stereoselectivity Switching in Polymerization of a Racemic Lactone for Stereocomplexed Crystalline Polymer with a Circular Life Cycle. Angewandte Chemie - International Edition, 2019, 58, 1178-1182.	13.8	75
40	Catalytic coupling of biomass-derived aldehydes into intermediates for biofuels and materials. Catalysis Science and Technology, 2018, 8, 1777-1798.	4.1	55
41	Side Arm Twist on Zn-Catalyzed Hydrosilylative Reduction of CO ₂ to Formate and Methanol Equivalents with High Selectivity and Activity. ACS Catalysis, 2018, 8, 4710-4718.	11.2	51
42	Living Group Transfer Polymerization of Renewable \hat{l}_{\pm} -Methylene- \hat{l}_{\pm} -butyrolactones Using Al(C6F5)3 Catalyst. Macromolecules, 2018, 51, 1296-1307.	4.8	30
43	A synthetic polymer system with repeatable chemical recyclability. Science, 2018, 360, 398-403.	12.6	437
44	Living Polymerization of Conjugated Polar Alkenes Catalyzed by <i>N</i> -Heterocyclic Olefin-Based Frustrated Lewis Pairs. ACS Catalysis, 2018, 8, 3571-3578.	11.2	99
45	Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid–Base Pairs. Chemical Reviews, 2018, 118, 10551-10616.	47.7	217
46	Catalytic Lewis Pair Polymerization of Renewable Methyl Crotonate to High-Molecular-Weight Polymers. ACS Catalysis, 2018, 8, 9877-9887.	11.2	60
47	Effects of Chain Ends on Thermal and Mechanical Properties and Recyclability of Poly(<i>γ</i> â€butyrolactone). Journal of Polymer Science Part A, 2018, 56, 2271-2279.	2.3	29
48	Lewis Pair Polymerization for New Reactivity and Structure in Polymer Synthesis. Molecules, 2018, 23, 915.	3.8	2
49	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	5.4	10
50	Living Coordination Polymerization of a Sixâ€Five Bicyclic Lactone to Produce Completely Recyclable Polyester. Angewandte Chemie, 2018, 130, 12738-12742.	2.0	19
51	Living Coordination Polymerization of a Sixâ€Five Bicyclic Lactone to Produce Completely Recyclable Polyester. Angewandte Chemie - International Edition, 2018, 57, 12558-12562.	13.8	96
52	Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nature Communications, 2018, 9, 2345.	12.8	115
53	Precision Polymer Synthesis via Chemoselective, Stereoselective, and Living/Controlled Polymerization of Polar Divinyl Monomers. Synlett, 2017, 28, 1028-1039.	1.8	13
54	Organocatalytic Coupling of Bromo-Lactide with Cyclic Ethers and Carbonates to Chiral Bromo-Diesters: NHC or Anion Catalysis?. ACS Catalysis, 2017, 7, 3929-3933.	11.2	4

#	Article	IF	CITATIONS
55	Chemically recyclable polymers: a circular economy approach to sustainability. Green Chemistry, 2017, 19, 3692-3706.	9.0	557
56	Living Ring-Opening Polymerization of Lactones by <i>N</i> Heterocyclic Olefin/Al(C ₆ F ₅) ₃ Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism. Macromolecules, 2017, 50, 123-136.	4.8	109
57	"Nonstrained―γ-Butyrolactone-Based Copolyesters: Copolymerization Characteristics and Composition-Dependent (Thermal, Eutectic, Cocrystallization, and Degradation) Properties. Macromolecules, 2017, 50, 8469-8479.	4.8	65
58	Streamlined Synthesis of Biomonomers for Bioresourced Materials: Bisfuran Diacids, Diols, and Diamines via Common Bisfuran Dibromide Intermediates. Industrial & Engineering Chemistry Research, 2017, 56, 11380-11387.	3.7	5
59	Chemoselective Lewis pair polymerization of renewable multivinyl-functionalized \hat{I}^3 -butyrolactones. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170003.	3.4	22
60	Increasing complexity in organopolymerization of multifunctional \hat{I}^3 -butyrolactones. European Polymer Journal, 2017, 95, 678-692.	5.4	14
61	Reactivity of Bridged and Nonbridged Zirconocenes toward Biorenewable Itaconic Esters and Anhydride. Organometallics, 2017, 36, 2922-2933.	2.3	3
62	Brush Polymer of Donor-Accepter Dyads via Adduct Formation between Lewis Base Polymer Donor and All Carbon Lewis Acid Acceptor. Molecules, 2017, 22, 1564.	3.8	4
63	Stereoregular Brush Polymers and Graft Copolymers by Chiral Zirconocene-Mediated Coordination Polymerization of P3HT Macromers. Polymers, 2017, 9, 139.	4.5	8
64	Robust Cross-Linked Stereocomplexes and C ₆₀ Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization. Journal of the American Chemical Society, 2016, 138, 9533-9547.	13.7	30
65	Towards Truly Sustainable Polymers: A Metalâ€Free Recyclable Polyester from Biorenewable Nonâ€Strained γâ€Butyrolactone. Angewandte Chemie - International Edition, 2016, 55, 4188-4193.	13.8	217
66	Selective Reduction of CO ₂ to CH ₄ by Tandem Hydrosilylation with Mixed Al/B Catalysts. Journal of the American Chemical Society, 2016, 138, 5321-5333.	13.7	140
67	Frontispiz: Towards Truly Sustainable Polymers: A Metalâ€Free Recyclable Polyester from Biorenewable Nonâ€Strained γâ€Butyrolactone. Angewandte Chemie, 2016, 128, .	2.0	0
68	The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways. Journal of the American Chemical Society, 2016, 138, 14326-14337.	13.7	132
69	Organocatalytic Cross-Coupling of Biofuranics to Multifunctional Difuranic C ₁₁ Building Blocks. ACS Sustainable Chemistry and Engineering, 2016, 4, 4927-4936.	6.7	23
70	Recyclable montmorillonite-supported thiazolium ionic liquids for high-yielding and solvent-free upgrading of furfural and 5-hydroxymethylfurfural to $C < sub > 10 < sub > and C < sub > 12 < sub > furoins. RSC Advances, 2016, 6, 76707-76715.$	3.6	17
71	Polyesters and Poly(ester-urethane)s from Biobased Difuranic Polyols. ACS Sustainable Chemistry and Engineering, 2016, 4, 7118-7129.	6.7	38
72	Controlled or High-Speed Group Transfer Polymerization by Silyl Ketene Acetals without Catalyst. Macromolecules, 2016, 49, 8075-8087.	4.8	10

#	Article	IF	Citations
73	Recyclable Earthâ€Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce <i>γ</i> à€Valerolactone. ChemSusChem, 2016, 9, 181-185.	6.8	33
74	Organocatalytic and Chemoselective Polymerization of Multivinyl-Functionalized \hat{I}^3 -Butyrolactones. ACS Macro Letters, 2016, 5, 772-776.	4.8	31
75	Towards Truly Sustainable Polymers: A Metalâ€Free Recyclable Polyester from Biorenewable Nonâ€Strained γâ€Butyrolactone. Angewandte Chemie, 2016, 128, 4260-4265.	2.0	52
76	Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters. Journal of the American Chemical Society, 2016, 138, 2021-2035.	13.7	51
77	Frontispiece: Towards Truly Sustainable Polymers: A Metalâ€Free Recyclable Polyester from Biorenewable Nonâ€Strained γâ€Butyrolactone. Angewandte Chemie - International Edition, 2016, 55, .	13.8	0
78	Unsolvated Al(C ₆ F ₅) ₃ : structural features and electronic interaction with ferrocene. Dalton Transactions, 2016, 45, 6105-6110.	3.3	41
79	Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of \hat{l}^3 -butyrolactone. Nature Chemistry, 2016, 8, 42-49.	13.6	461
80	Elusive Silane–Alane Complex [SiHâ‹â‹â‹â(Al]: Isolation, Characterization, and Multifaceted Frustrated Lewis Pair Type Catalysis. Angewandte Chemie - International Edition, 2015, 54, 6842-6846.	13.8	106
81	Silylium dual catalysis in living polymerization of methacrylates via <i>In situ</i> hydrosilylation of monomer. Journal of Polymer Science Part A, 2015, 53, 1895-1903.	2.3	19
82	Organocatalytic Polymerization of Furfuryl Methacrylate and Postâ€Diels–Alder Click Reaction to Crossâ€Linked Materials. Macromolecular Chemistry and Physics, 2015, 216, 1421-1430.	2.2	17
83	Reactivity of Amine/E(C6F5)3 (E = B, Al) Lewis Pairs toward Linear and Cyclic Acrylic Monomers: Hydrogenation vs. Polymerization. Molecules, 2015, 20, 9575-9590.	3.8	39
84	Recyclable Supported Carbene Catalysts for High-Yielding Self-Condensation of Furaldehydes into C ₁₀ and C ₁₂ Furoins. ACS Catalysis, 2015, 5, 6907-6917.	11.2	54
85	Polymeric carbon Lewis base–acid adducts: poly(NHC–C ₆₀). Polymer Chemistry, 2015, 6, 1741-1750.	3.9	5
86	Lewis Pair Polymerization of Acrylic Monomers by <i>N</i> à€Heterocyclic Carbenes and B(C _{F_{F_{)₃. Israel Journal of Chemistry, 2015, 55, 216-225.}}}	2.3	42
87	Chemoselective, Stereospecific, and Living Polymerization of Polar Divinyl Monomers by Chiral Zirconocenium Catalysts. Journal of the American Chemical Society, 2015, 137, 9469-9480.	13.7	47
88	Organocatalytic Upgrading of Furfural and 5-Hydroxymethyl Furfural to C10 and C12 Furoins with Quantitative Yield and Atom-Efficiency. International Journal of Molecular Sciences, 2015, 16, 7143-7158.	4.1	38
89	Non-Amide Kinetic Hydrate Inhibitors: Investigation of the Performance of a Series of Poly(vinylphosphonate) Diesters. Energy & Energy & 2015, 29, 2336-2341.	5.1	19
90	Cationic Zirconoceneâ€Mediated Catalytic Hâ€Shuttling Polymerization of Polar Vinyl Monomers: Scopes of Catalyst, Chainâ€Transfer Agent, and Monomer. Macromolecular Symposia, 2015, 349, 104-114.	0.7	6

#	Article	IF	CITATIONS
91	Polymerizability of <i>Exo</i> å€methyleneâ€lactide toward vinyl addition and ring opening. Journal of Polymer Science Part A, 2015, 53, 1523-1532.	2.3	22
92	From <i>meso</i> -Lactide to Isotactic Polylactide: Epimerization by B/N Lewis Pairs and Kinetic Resolution by Organic Catalysts. Journal of the American Chemical Society, 2015, 137, 12506-12509.	13.7	129
93	An interchangeable homogeneous â‡" heterogeneous catalyst system for furfural upgrading. Green Chemistry, 2015, 17, 5149-5153.	9.0	18
94	Organopolymerization of naturally occurring Tulipalin B: a hydroxyl-functionalized methylene butyrolactone. Organic Chemistry Frontiers, 2015, 2, 1625-1631.	4.5	12
95	Synthesis of Pyridine- and 2-Oxazoline-Functionalized Vinyl Polymers by Alane-Based Frustrated Lewis Pairs. Synlett, 2014, 25, 1534-1538.	1.8	63
96	Organocatalysis in biorefining for biomass conversion and upgrading. Green Chemistry, 2014, 16, 964-981.	9.0	92
97	Chain Propagation and Termination Mechanisms for Polymerization of Conjugated Polar Alkenes by [Al]-Based Frustrated Lewis Pairs. Macromolecules, 2014, 47, 7765-7774.	4.8	87
98	Protonâ€Transfer Polymerization (HTP): Converting Methacrylates to Polyesters by an Nâ€Heterocyclic Carbene. Angewandte Chemie - International Edition, 2014, 53, 11900-11906.	13.8	49
99	Synthesis of \hat{l}^2 -methyl- \hat{l}^2 -methylene- \hat{l}^3 -butyrolactone from biorenewable itaconic acid. Organic Chemistry Frontiers, 2014, 1, 230.	4.5	37
100	High-speed organocatalytic polymerization of a renewable methylene butyrolactone by a phosphazene superbase. Polymer Chemistry, 2014, 5, 3261.	3.9	26
101	Unusual C–C Bond Cleavage in the Formation of Amine-Bis(phenoxy) Group 4 Benzyl Complexes: Mechanism of Formation and Application to Stereospecific Polymerization. Organometallics, 2014, 33, 4118-4130.	2.3	10
102	Coordination Ring-Opening Copolymerization of Naturally Renewable α-Methylene-γ-butyrolactone into Unsaturated Polyesters. Macromolecules, 2014, 47, 3614-3624.	4.8	63
103	Integrated Catalytic Process for Biomass Conversion and Upgrading to C ₁₂ Furoin and Alkane Fuel. ACS Catalysis, 2014, 4, 1302-1310.	11.2	94
104	Probing Site Cooperativity of Frustrated Phosphine/Borane Lewis Pairs by a Polymerization Study. Journal of the American Chemical Society, 2014, 136, 1774-1777.	13.7	123
105	Cationic kinetic hydrate inhibitors and the effect on performance of incorporating cationic monomers into N-vinyl lactam copolymers. Chemical Engineering Science, 2013, 102, 424-431.	3.8	31
106	Chromium(0) Nanoparticles as Effective Catalyst for the Conversion of Glucose into 5â∈Hydroxymethylfurfural. ChemSusChem, 2013, 6, 61-64.	6.8	58
107	Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids. Applied Catalysis A: General, 2013, 460-461, 1-7.	4.3	22
108	Polymeric ionic liquid (PIL)-supported recyclable catalysts for biomass conversion into HMF. Biomass and Bioenergy, 2013, 48, 181-190.	5.7	36

#	Article	IF	CITATIONS
109	Organocatalytic Conjugate-Addition Polymerization of Linear and Cyclic Acrylic Monomers by N-Heterocyclic Carbenes: Mechanisms of Chain Initiation, Propagation, and Termination. Journal of the American Chemical Society, 2013, 135, 17925-17942.	13.7	91
110	Rare-Earth Half-Sandwich Dialkyl and Homoleptic Trialkyl Complexes for Rapid and Stereoselective Polymerization of a Conjugated Polar Olefin. Organometallics, 2013, 32, 1459-1465.	2.3	23
111	Diesel and Alkane Fuels From Biomass by Organocatalysis and Metal–Acid Tandem Catalysis. ChemSusChem, 2013, 6, 2236-2239.	6.8	89
112	Organocatalytic upgrading of the key biorefining building block by a catalytic ionic liquid and N-heterocyclic carbenes. Green Chemistry, 2012, 14, 2738.	9.0	66
113	Stereoselectivity in Metallocene-Catalyzed Coordination Polymerization of Renewable Methylene Butyrolactones: From Stereo-random to Stereo-perfect Polymers. Journal of the American Chemical Society, 2012, 134, 7278-7281.	13.7	56
114	Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Transactions, 2012, 41, 9119.	3.3	191
115	Ligand-Free Magnesium Catalyst System: Immortal Polymerization of <scp>I</scp> -Lactide with High Catalyst Efficiency and Structure of Active Intermediates. Macromolecules, 2012, 45, 6957-6965.	4.8	7 5
116	Polymerization by Classical and Frustrated Lewis Pairs. Topics in Current Chemistry, 2012, 334, 239-260.	4.0	66
117	In situ stereocomplexing polymerization of methyl methacrylate by diastereospecific metallocene catalyst pairs. Polymer Chemistry, 2012, 3, 3247.	3.9	9
118	<i>ansa</i> â€Rareâ€Earthâ€Metal Catalysts for Rapid and Stereoselective Polymerization of Renewable Methylene Methylbutyrolactones. Chemistry - A European Journal, 2012, 18, 3345-3354.	3.3	31
119	Conjugateâ€Addition Organopolymerization: Rapid Production of Acrylic Bioplastics by Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2012, 51, 2465-2469.	13.8	125
120	Hydride-Shuttling Chain-Transfer Polymerization of Methacrylates Catalyzed by Metallocenium Enolate Metallacycleâ ⁻ 'Hydridoborate Ion Pairs. Journal of the American Chemical Society, 2011, 133, 1572-1588.	13.7	19
121	Dinuclear Silylium-enolate Bifunctional Active Species: Remarkable Activity and Stereoselectivity toward Polymerization of Methacrylate and Renewable Methylene Butyrolactone Monomers. Journal of the American Chemical Society, 2011, 133, 13674-13684.	13.7	70
122	Cinchona Alkaloids as Stereoselective Organocatalysts for the Partial Kinetic Resolution Polymerization of <i>rac</i> -Lactide. Macromolecules, 2011, 44, 4116-4124.	4.8	70
123	Synthesis of highly syndiotactic polymers by discrete catalysts or initiators. Polymer Chemistry, 2011, 2, 2462.	3.9	33
124	Anionic polymerization of MMA and renewable methylene butyrolactones by resorbable potassium salts. Journal of Polymer Science Part A, 2011, 49, 2008-2017.	2.3	43
125	Synthesis of helical poly(phenylacetylene)s bearing cinchona alkaloid pendants and their application to asymmetric organocatalysis. Journal of Polymer Science Part A, 2011, 49, 5192-5198.	2.3	49
126	High‧peed Living Polymerization of Polar Vinyl Monomers by Selfâ€Healing Silylium Catalysts. Chemistry - A European Journal, 2010, 16, 10462-10473.	3.3	35

#	Article	IF	CITATIONS
127	Alaneâ€Based Classical and Frustrated Lewis Pairs in Polymer Synthesis: Rapid Polymerization of MMA and Naturally Renewable Methylene Butyrolactones into Highâ€Molecularâ€Weight Polymers. Angewandte Chemie - International Edition, 2010, 49, 10158-10162.	13.8	264
128	Silylium–metallocenium dications derived from hydrosilyl-bridged metallocenes and roles in polymerization of polar and nonpolar vinyl monomers. Journal of Organometallic Chemistry, 2010, 695, 1464-1471.	1.8	5
129	Ionic Liquidâ^'Water Mixtures: Enhanced <i>K</i> _w for Efficient Cellulosic Biomass Conversion. Energy & Discourse (2010, 24, 2410-2417.)	5.1	143
130	Effect of Polymer Tacticity on the Performance of Poly($\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -dialkylacrylamide)s as Kinetic Hydrate Inhibitors. Energy & Samp; Fuels, 2010, 24, 2554-2562.	5.1	39
131	Polymerization of Naturally Renewable Methylene Butyrolactones by Half-Sandwich Indenyl Rare Earth Metal Dialkyls with Exceptional Activity. Macromolecules, 2010, 43, 9328-9336.	4.8	41
132	Catalyst-Site-Controlled Coordination Polymerization of Polar Vinyl Monomers to Highly Syndiotactic Polymers. Journal of the American Chemical Society, 2010, 132, 2695-2709.	13.7	60
133	Stereospecific Polymerization of Chiral Oxazolidinone-Functionalized Alkenes. Macromolecules, 2010, 43, 7504-7514.	4.8	22
134	Living Polymerization of Naturally Renewable Butyrolactone-Based Vinylidene Monomers by Ambiphilic Silicon Propagators. Macromolecules, 2010, 43, 4902-4908.	4.8	92
135	Coordination polymerization of renewable butyrolactone-based vinyl monomers by lanthanide and early metal catalysts. Dalton Transactions, 2010, 39, 6710.	3.3	53
136	Stereoregular Methacrylate-POSS Hybrid Polymers: Syntheses and Nanostructured Assemblies. Chemistry of Materials, 2009, 21, 5743-5753.	6.7	51
137	Coordinationâ [^] Addition Polymerization and Kinetic Resolution of Methacrylamides by Chiral Metallocene Catalysts. Macromolecules, 2009, 42, 1462-1471.	4.8	30
138	Coordination Polymerization of Polar Vinyl Monomers by Single-Site Metal Catalysts. Chemical Reviews, 2009, 109, 5157-5214.	47.7	513
139	ION-PAIRING POLYMERIZATION. Comments on Inorganic Chemistry, 2009, 30, 7-27.	5.2	6
140	Transformation of polymerization of polar vinyl monomers by discrete and hybrid metal catalysts. Dalton Transactions, 2009, , 8784.	3.3	20
141	Structureâ^'Reactivity Relationships in Bimolecular-Activated Monomer Polymerization of (Meth)acrylates Using Oxidatively Activated Group 14 Ketene Acetals. Macromolecules, 2008, 41, 6353-6360.	4.8	58
142	Metallocene-Mediated Asymmetric Coordination Polymerization of Polar Vinyl Monomers to Optically Active, Stereoregular Polymers. Macromolecules, 2008, 41, 3405-3416.	4.8	50
143	Metallocene-Catalyzed Polymerization of Methacrylates to Highly Syndiotactic Polymers at High Temperatures. Journal of the American Chemical Society, 2008, 130, 2463-2465.	13.7	37
144	Syndioselective MMA Polymerization by Group 4 Constrained Geometry Catalysts: A Combined Experimental and Theoretical Study. Macromolecules, 2008, 41, 6910-6919.	4.8	22

#	Article	IF	CITATIONS
145	Controlled Polymerization of Methacrylates to High Molecular Weight Polymers Using Oxidatively Activated Group Transfer Polymerization Initiators. Macromolecules, 2008, 41, 36-42.	4.8	68
146	Neutral Metallocene Ester Enolate and Non-Metallocene Alkoxy Complexes of Zirconium for Catalytic Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2008, 27, 5632-5640.	2.3	45
147	Group 13 and Lanthanide Complexes Supported by Tridentate Tripodal Triamine Ligands:  Structural Diversity and Polymerization Catalysis. Organometallics, 2007, 26, 5395-5405.	2.3	26
148	Asymmetric Coordination Polymerization of Acrylamides by Enantiomeric Metallocenium Ester Enolate Catalysts. Journal of the American Chemical Society, 2007, 129, 6724-6725.	13.7	53
149	Tripodal Amido Boron and Aluminum Complexes. Inorganic Chemistry, 2007, 46, 1481-1487.	4.0	27
150	Remarkable Lewis acid effects on polymerization of functionalized alkenes by metallocene and lithium ester enolates. Journal of Organometallic Chemistry, 2007, 692, 4535-4544.	1.8	31
151	Stereoregular P(MMA)-clay nanocomposites by metallocene catalysts:In situ synthesis and stereocomplex formation. Journal of Polymer Science Part A, 2007, 45, 2581-2592.	2.3	20
152	Chain Termination and Transfer Reactions in the Acrylate Polymerization by a Monometallic Chiral Zirconocenium Catalyst System. Macromolecules, 2006, 39, 1318-1327.	4.8	31
153	Cationic Zinc Enolates as Highly Active Catalysts for Acrylate Polymerization. Journal of the American Chemical Society, 2006, 128, 14822-14823.	13.7	25
154	Diastereospecific Ion-Pairing Polymerization of Functionalized Alkenes by Metallocene/Lewis Acid Hybrid Catalysts. Macromolecules, 2006, 39, 7204-7215.	4.8	31
155	Activation of Tantalocene(V) Alkyl and Alkylidene Complexes with Strong Organo Lewis Acids and Application to Polymerization Catalysis. Organometallics, 2006, 25, 3721-3729.	2.3	23
156	Synthesis and MMA polymerization of chiral ansa-zirconocene ester enolate complexes with C2- and Cs-ligation. Journal of Organometallic Chemistry, 2006, 691, 3490-3497.	1.8	25
157	Polymerization of MMA by oscillating zirconocene catalysts, diastereomeric zirconocene mixtures, and diastereospecific metallocene pairs. Journal of Organometallic Chemistry, 2005, 690, 6263-6270.	1.8	18
158	Mechanistic Studies of Stereospecific Polymerization of Methacrylates Using a Cationic, Chiralansa-Zirconocene Ester Enolate. Macromolecules, 2005, 38, 2587-2594.	4.8	69
159	Mechanism and Scope of Stereospecific, Coordinative-Anionic Polymerization of Acrylamides by Chiral Zirconocenium Ester and Amide Enolates. Macromolecules, 2005, 38, 6822-6832.	4.8	56
160	Single-Site Anionic Polymerization. Monomeric Ester Enolaluminate Propagator Synthesis, Molecular Structure, and Polymerization Mechanism. Journal of the American Chemical Society, 2005, 127, 961-974.	13.7	102
161	Stereospecific polymerization of methacrylates by metallocene and related catalysts. Journal of Polymer Science Part A, 2004, 42, 3395-3403.	2.3	44
162	Ligand exchange and abstraction reactions involving titanium isopropoxide with tris(pentafluorophenyl)borane and -alane: ramifications for ring-opening polymerization of propylene oxide. Inorganica Chimica Acta, 2004, 357, 3911-3919.	2.4	19

#	Article	IF	Citations
163	Living and Syndioselective Polymerization of Methacrylates by Constrained Geometry Titanium Alkyl and Enolate Complexes. Macromolecules, 2004, 37, 3092-3100.	4.8	74
164	ansa-Zirconocene Ester Enolates:  Synthesis, Structure, Reaction with Organo-Lewis Acids, and Application to Polymerization of Methacrylates. Journal of the American Chemical Society, 2004, 126, 4897-4906.	13.7	103
165	Divalentansa-Zirconocenes:Â Stereoselective Synthesis and High Activity for Propylene Polymerization. Journal of the American Chemical Society, 2004, 126, 42-43.	13.7	25
166	Stereospecific, Coordination Polymerization of Acrylamides by Chiralansa-Metallocenium Alkyl and Ester Enolate Cations. Macromolecules, 2004, 37, 4741-4743.	4.8	45
167	Polymerization of methyl methacrylate by metallocene imido complexes and tris(pentafluorophenyl)alane. Journal of Polymer Science Part A, 2003, 41, 3132-3142.	2.3	26
168	First Isolation and Structural Characterization of Triarylaluminumâ^'Water and â^'Methanol Complexes. Organometallics, 2003, 22, 207-210.	2.3	35
169	Catalytic Ring-Opening Polymerization of Propylene Oxide by Organoborane and Aluminum Lewis Acids. Macromolecules, 2003, 36, 5470-5481.	4.8	60
170	Amphicatalytic Polymerization:Â Synthesis of Stereomultiblock Poly(methyl methacrylate) with Diastereospecific Ion Pairs. Journal of the American Chemical Society, 2003, 125, 7150-7151.	13.7	50
171	Olefin Copolymerization and Polymerization of Methyl Methacrylate Catalyzed by Tantalum(V)-Based Complexes. ACS Symposium Series, 2003, , 101-111.	0.5	9
172	Chiral Amido Aluminum and Zinc Alkyls:Â A Synthetic, Structural, and Polymerization Study. Organometallics, 2003, 22, 769-774.	2.3	75
173	Stereochemically Controlled PMMA-Exfoliated Silicate Nanocomposites Using Intergallery-Anchored Metallocenium Cations. Journal of the American Chemical Society, 2003, 125, 15726-15727.	13.7	49
174	Isotactic-b-Syndiotactic Stereoblock Poly(methyl methacrylate) by Chiral Metallocene/Lewis Acid Hybrid Catalysts. Journal of the American Chemical Society, 2002, 124, 5612-5613.	13.7	70
175	Chiral ansa-Titanocene Imido Complexes:  Novel Synthesis and Effective Initiator for Syndiospecific Polymerization of MMA. Organometallics, 2002, 21, 13-15.	2.3	31
176	Tantalum(V)-Based Metallocene, Half-Metallocene, and Non-Metallocene Complexes as Ethyleneâ^1-Octene Copolymerization and Methyl Methacrylate Polymerization Catalysts. Organometallics, 2002, 21, 832-839.	2.3	120
177	Neutral, Three-Coordinate, Chelating Diamide Aluminum Complexes:  Catalysts/Initiators for Synthesis of Telechelic Oligomers and High Polymers. Organometallics, 2002, 21, 1438-1442.	2.3	91
178	Monoalkyl, chiral-at-metal â€~constrained geometry' complexes as efficient α-olefin and methyl methacrylate polymerisation catalysts. Chemical Communications, 2002, , 708-709.	4.1	52
179	Neutral Olefin Polymerization Activators as Highly Active Catalysts for ROP of Heterocyclic Monomers and for Polymerization of Styrene. Macromolecules, 2002, 35, 13-15.	4.8	35
180	Stereoblock Copolymerization of Propylene and Methyl Methacrylate with Single-Site Metallocene Catalysts. Macromolecular Chemistry and Physics, 2002, 203, 2329-2333.	2.2	32

#	Article	IF	CITATION
181	Chlorobis(pentafluorophenyl)alane: synthesis, crystal structure, and polymerization catalysis. Inorganic Chemistry Communication, 2002, 5, 698-701.	3.9	33
182	"Double Activation―of Constrained Geometry and ansa-Metallocene Group 4 Metal Dialkyls:  Synthesis, Structure, and Olefin Polymerization Study of Mono- and Dicationic Aluminate Complexes. Journal of the American Chemical Society, 2001, 123, 745-746.	13.7	90
183	Reversal of Polymerization Stereoregulation in Anionic Polymerization of MMA by Chiral Metallocene and Non-metallocene Initiators:Â A New Reaction Pathway for Metallocene-Initiated MMA Polymerization. Journal of the American Chemical Society, 2001, 123, 7943-7944.	13.7	102
184	Ligand Exchange and Alkyl Abstraction Involving (Perfluoroaryl)boranes and -alanes with Aluminum and Gallium Alkyls. Organometallics, 2000, 19, 4684-4686.	2.3	143
185	Unusual Weakly Coordinating Anion Reactivity in Metallocene Chemistry. Formation of Tantalocene Cationâ [^] Dinuclear Anion Pairs. Organometallics, 2000, 19, 5541-5543.	2.3	39
186	Mechanism of Spatial and Temporal Control in Precision Cyclic Vinyl Polymer Synthesis by Lewis Pair Polymerization. Angewandte Chemie, 0, , .	2.0	0