Jose M Pardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12028510/publications.pdf

Version: 2024-02-01

61984 149698 10,210 58 43 56 citations h-index g-index papers 61 61 61 6457 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The phosphoinositide PI(3,5)P ₂ inhibits the activity of plant NHX proton/potassium antiporters: Advantages of a novel electrophysiological approach. Biomolecular Concepts, 2022, 13, 119-125.	2.2	1
2	HKT sodium and potassium transporters in <i>Arabidopsis thaliana</i> and related halophyte species. Physiologia Plantarum, 2021, 171, 546-558.	5.2	50
3	Beyond the patchâ€elamp resolution: functional activity of nonelectrogenic vacuolar NHX proton/potassium antiporters and inhibition by phosphoinositides. New Phytologist, 2021, 229, 3026-3036.	7.3	18
4	Reassessing the Role of Potassium in Tomato Grown with Water Shortages. Horticulturae, 2021, 7, 20.	2.8	13
5	Insights into the mechanisms of transport and regulation of the arabidopsis high-affinity K+ transporter HAK51. Plant Physiology, 2021, 185, 1860-1874.	4.8	32
6	The role of PQL genes in response to salinity tolerance in Arabidopsis and barley. Plant Direct, 2021, 5, e00301.	1.9	1
7	Distinct Roles of N-Terminal Fatty Acid Acylation of the Salinity-Sensor Protein SOS3. Frontiers in Plant Science, 2021, 12, 691124.	3.6	8
8	The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. Plant Physiology and Biochemistry, 2021, 168, 239-251.	5.8	13
9	The GIGANTEA-ENHANCED EM LEVEL Complex Enhances Drought Tolerance via Regulation of Abscisic Acid Synthesis. Plant Physiology, 2020, 184, 443-458.	4.8	42
10	Coordinated Transport of Nitrate, Potassium, and Sodium. Frontiers in Plant Science, 2020, 11, 247.	3.6	98
11	ESCRT-I Component VPS23A Sustains Salt Tolerance by Strengthening the SOS Module in Arabidopsis. Molecular Plant, 2020, 13, 1134-1148.	8.3	37
12	Editorial: Resistance to Salinity and Water Scarcity in Higher Plants. Insights From Extremophiles and Stress-Adapted Plants: Tools, Discoveries and Future Prospects. Frontiers in Plant Science, 2019, 10, 373.	3.6	6
13	A Critical Role of Sodium Flux via the Plasma Membrane Na ⁺ /H ⁺ Exchanger SOS1 in the Salt Tolerance of Rice. Plant Physiology, 2019, 180, 1046-1065.	4.8	149
14	Regulation of K+ Nutrition in Plants. Frontiers in Plant Science, 2019, 10, 281.	3.6	217
15	Pleiotropic effects of enhancing vacuolar K/H exchange in tomato. Physiologia Plantarum, 2018, 163, 88-102.	5.2	9
16	Upstream kinases of plant Sn <scp>RK</scp> s are involved in salt stress tolerance. Plant Journal, 2018, 93, 107-118.	5.7	64
17	K ⁺ Efflux Antiporters 4, 5, and 6 Mediate pH and K ⁺ Homeostasis in Endomembrane Compartments. Plant Physiology, 2018, 178, 1657-1678.	4.8	65
18	A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance. Plant Physiology, 2016, 171, 2112-2126.	4.8	93

#	Article	IF	CITATIONS
19	CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiology, 2015, 169, pp.01401.2015.	4.8	174
20	Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4532-41.	7.1	81
21	Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1806-14.	7.1	171
22	A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Reports, 2014, 33, 277-288.	5.6	94
23	Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications, 2013, 4, 1352.	12.8	220
24	The Salt Overly Sensitive (SOS) Pathway: Established and Emerging Roles. Molecular Plant, 2013, 6, 275-286.	8.3	528
25	Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in <i>Arabidopsis</i> Plant Cell, 2012, 24, 1127-1142.	6.6	533
26	Structural Insights on the Plant Salt-Overly-Sensitive 1 (SOS1) Na+/H+ Antiporter. Journal of Molecular Biology, 2012, 424, 283-294.	4.2	49
27	Expression of wheat Na+/H+ antiporter TNHXS1 and H+- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Molecular Biology, 2012, 79, 137-155.	3.9	107
28	Na+ and K+ Transporters in Plant Signaling. Signaling and Communication in Plants, 2011, , 65-98.	0.7	27
29	Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Molecular Biology, 2011, 76, 545-556.	3.9	48
30	Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2611-2616.	7.1	341
31	Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology, 2010, 21, 185-196.	6.6	182
32	The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant Journal, 2010, 61, 495-506.	5.7	268
33	How do vacuolar NHX exchangers function in plant salt tolerance?. Plant Signaling and Behavior, 2010, 5, 792-795.	2.4	147
34	The Na ⁺ /H ⁺ exchanger SOS1 controls extrusion and distribution of Na ⁺ in tomato plants under salinity conditions. Plant Signaling and Behavior, 2009, 4, 973-976.	2.4	65
35	The Phosphate Transporter PHT4;6 Is a Determinant of Salt Tolerance that Is Localized to the Golgi Apparatus of Arabidopsis. Molecular Plant, 2009, 2, 535-552.	8.3	83
36	Loss of Halophytism by Interference with SOS1 Expression. Plant Physiology, 2009, 151, 210-222.	4.8	254

#	Article	IF	Citations
37	Mutants of the Arabidopsis thaliana Cation/H+ Antiporter AtNHX1 Conferring Increased Salt Tolerance in Yeast. Journal of Biological Chemistry, 2009, 284, 14276-14285.	3.4	71
38	Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 Protein Kinase Stabilizes Their Protein Complex and Regulates Salt Tolerance in <i>Arabidopsis</i>	6.6	228
39	The plasma membrane Na ⁺ /H ⁺ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na ⁺ between plant organs. Plant, Cell and Environment, 2009, 32, 904-916.	5.7	313
40	Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics, 2008, 473, 8-15.	3.0	104
41	Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiology, 2007, 143, 1001-1012.	4.8	512
42	SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. Plant Cell, 2007, 19, 1415-1431.	6.6	492
43	Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany, 2006, 57, 1181-1199.	4.8	385
44	Transgenic Evaluation of Activated Mutant Alleles of SOS2 Reveals a Critical Requirement for Its Kinase Activity and C-Terminal Regulatory Domain for Salt Tolerance in Arabidopsis thaliana. Plant Cell, 2004, 16, 435-449.	6.6	163
45	Regulation of Vacuolar Na+/H+ Exchange in Arabidopsis thaliana by the Salt-Overly-Sensitive (SOS) Pathway. Journal of Biological Chemistry, 2004, 279, 207-215.	3.4	337
46	The STT3a Subunit Isoform of the Arabidopsis Oligosaccharyltransferase Controls Adaptive Responses to Salt/Osmotic Stress. Plant Cell, 2003, 15, 2273-2284.	6.6	202
47	Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9061-9066.	7.1	500
48	The Arabidopsis Na+/H+Exchanger AtNHX1 Catalyzes Low Affinity Na+ and K+ Transport in Reconstituted Liposomes. Journal of Biological Chemistry, 2002, 277, 2413-2418.	3.4	201
49	The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. Plant Cell, 2002, 14, 465-477.	6.6	1,127
50	Plants and sodium ions: keeping company with the enemy. Genome Biology, 2002, 3, reviews1017.1.	9.6	83
51	Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant Journal, 2002, 30, 529-539.	5.7	491
52	The Long and Winding Road to Halotolerance Genes. , 2002, , 505-533.		10
53	Tobacco and Arabidiopsis SLT1 mediate salt tolerance of yeast. Plant Molecular Biology, 2001, 45, 489-500.	3.9	19
54	The dawn of plant salt tolerance genetics. Trends in Plant Science, 2000, 5, 317-319.	8.8	109

#	Article	IF	CITATIONS
55	Functional conservation between yeast and plant endosomal Na+/H+antiporters1. FEBS Letters, 2000, 471, 224-228.	2.8	160
56	Plants use calcium to resolve salt stress. Trends in Plant Science, 1998, 3, 411-412.	8.8	113
57	Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9681-9686.	7.1	202
58	Activated Calcineurin Confers High Tolerance to Ion Stress and Alters the Budding Pattern and Cell Morphology of Yeast Cells. Journal of Biological Chemistry, 1996, 271, 23061-23067.	3.4	99