Daniel W Nebert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12027650/publications.pdf

Version: 2024-02-01

208 papers

29,263 citations

74 h-index

9264

168

g-index

217 all docs

217 docs citations

times ranked

217

18854 citing authors

#	Article	IF	CITATIONS
1	P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics and Genomics, 1996, 6, 1-42.	5.7	2,629
2	The P450 Superfamily: Update on New Sequences, Gene Mapping, Accession Numbers, Early Trivial Names of Enzymes, and Nomenclature. DNA and Cell Biology, 1993, 12, 1-51.	1.9	1,596
3	Clinical importance of the cytochromes P450. Lancet, The, 2002, 360, 1155-1162.	13.7	1,190
4	The P450 Superfamily: Update on New Sequences, Gene Mapping, and Recommended Nomenclature. DNA and Cell Biology, 1991, 10, 1-14.	1.9	1,086
5	The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics and Genomics, 1997, 7, 255-269.	5.7	1,055
6	Role of Aryl Hydrocarbon Receptor-mediated Induction of the CYP1 Enzymes in Environmental Toxicity and Cancer. Journal of Biological Chemistry, 2004, 279, 23847-23850.	3.4	1,018
7	Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochemical Pharmacology, 2000, 59, 65-85.	4.4	867
8	Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics and Genomics, 2004, 14, 1-18.	5.7	850
9	The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nature Reviews Cancer, 2006, 6, 947-960.	28.4	793
10	The P450 Gene Superfamily: Recommended Nomenclature. DNA and Cell Biology, 1987, 6, 1-11.	5.2	790
11	Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature, 1988, 331, 442-446.	27.8	733
12	Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenetics and Genomics, 2005, 15, 677-685.	1.5	708
13	The P450 Superfamily: Updated Listing of All Genes and Recommended Nomenclature for the Chromosomal Loci. DNA and Cell Biology, 1989, 8, 1-13.	5.2	663
14	Human ATP-binding cassette (ABC) transporter family. Human Genomics, 2008, 3, 281.	2.9	576
15	Evolution of the P450 gene superfamily:. Trends in Genetics, 1990, 6, 182-186.	6.7	484
16	The Ah Locus: Genetic Differences in Toxicity, Cancer, Mutation, and Birth Defects. Critical Reviews in Toxicology, 1989, 20, 153-174.	3.9	419
17	Role of the Ah Receptor and the Dioxin-Inducible [Ah] Gene Battery in Toxicity, Cancer, and Signal Transduction. Annals of the New York Academy of Sciences, 1993, 685, 624-640.	3.8	405
18	Human cytochromes P450 in health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120431.	4.0	381

#	Article	IF	CITATIONS
19	Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Human Genomics, 2005, 2, 138-43.	2.9	327
20	Analysis of the glutathione S-transferase (GST) gene family. Human Genomics, 2004, 1, 460.	2.9	299
21	Genetic Expression of Aryl Hydrocarbon Hydroxylase Activity. Journal of Biological Chemistry, 1974, 249, 5599-5606.	3.4	288
22	Oral Exposure to Benzo[a]pyrene in the Mouse: Detoxication by Inducible Cytochrome P450 Is More Important Than Metabolic Activation. Molecular Pharmacology, 2004, 65, 1225-1237.	2.3	285
23	Human Drug-Metabolizing Enzyme Polymorphisms: Effects on Risk of Toxicity and Cancer. DNA and Cell Biology, 1996, 15, 273-280.	1.9	282
24	MINIREVIEW: Proposed Role of Drug-Metabolizing Enzymes: Regulation of Steady State Levels of the Ligands That Effect Growth, Homeostasis, Differentiation, and Neuroendocrine Functions. Molecular Endocrinology, 1991, 5, 1203-1214.	3.7	268
25	The UDP Glucuronosyltransferase Gene Super family: Suggested Nomenclature Based on Evolutionary Divergence. DNA and Cell Biology, 1991, 10, 487-494.	1.9	267
26	SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation. American Journal of Human Genetics, 2015, 97, 894-903.	6.2	242
27	Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. Journal of Cellular Physiology, 1975, 85, 393-414.	4.1	240
28	Trout P450IA1: cDNA and Deduced Protein Sequence, Expression in Liver, and Evolutionary Significance. DNA and Cell Biology, 1988, 7, 379-387.	5.2	218
29	Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist?. Clinical Genetics, 1999, 56, 247-258.	2.0	215
30	Knockout of the Mouse Glutamate Cysteine Ligase Catalytic Subunit (Gclc) Gene: Embryonic Lethal When Homozygous, and Proposed Model for Moderate Glutathione Deficiency When Heterozygous. Biochemical and Biophysical Research Communications, 2000, 279, 324-329.	2.1	211
31	Oral Benzo[a]pyrene in Cyp1 Knockout Mouse Lines: CYP1A1 Important in Detoxication, CYP1B1 Metabolism Required for Immune Damage Independent of Total-Body Burden and Clearance Rate. Molecular Pharmacology, 2006, 69, 1103-1114.	2.3	211
32	Drug-metabolizing enzymes in ligand-modulated transcription. Biochemical Pharmacology, 1994, 47, 25-37.	4.4	200
33	Aryl hydrocarbon receptor (AHR): "pioneer member―of the basic-helix/loop/helix per - Arnt - sim (bHLH/PAS) family of "sensors―of foreign and endogenous signals. Progress in Lipid Research, 2017, 67, 38-57.	11.6	195
34	Autoregulation plus upstream positive and negative control regions associated with transcriptional activation of the mouse P1450 gene. Nucleic Acids Research, 1985, 13, 7269-7288.	14.5	190
35	Role of genetics and drug metabolism in human cancer risk. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 247, 267-281.	1.0	190
36	Dioxin Induces Expression of c- <i>fos</i> and c- <i>jun</i> Proto-Oncogenes and a Large Increase in Transcription Factor AP-1. DNA and Cell Biology, 1992, 11, 269-281.	1.9	174

#	Article	IF	CITATIONS
37	Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8. American Journal of Human Genetics, 2015, 97, 886-893.	6.2	171
38	The MurineAh locus: In utero toxicity and teratogenesis associated with genetic differences in benzo[a]pyrene metabolism. Teratology, 1979, 20, 365-376.	1.6	168
39	NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: A HuGE review. Genetics in Medicine, 2002, 4, 62-70.	2.4	167
40	Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics, 1988, 2, 174-179.	2.9	165
41	From Human Genetics and Genomics to Pharmacogenetics and Pharmacogenomics: Past Lessons, Future Directions. Drug Metabolism Reviews, 2008, 40, 187-224.	3.6	162
42	The Aryl Hydrocarbon Receptor Functions as a Tumor Suppressor of Liver Carcinogenesis. Cancer Research, 2010, 70, 212-220.	0.9	154
43	Update of the NAD(P)H:quinone oxidoreductase (NQO) gene family. Human Genomics, 2006, 2, 329.	2.9	146
44	Regulation of the mammalian cytochrome P1-450 (CYP1A1) gene. International Journal of Biochemistry & Cell Biology, 1989, 21, 243-252.	0.5	145
45	Dioxin Causes a Sustained Oxidative Stress Response in the Mouse. Biochemical and Biophysical Research Communications, 1998, 253, 44-48.	2.1	144
46	Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor. Free Radical Biology and Medicine, 2002, 33, 1268-1278.	2.9	141
47	Update on the olfactory receptor (OR) gene superfamily. Human Genomics, 2008, 3, 87.	2.9	141
48	Debrisoquine 4-Hydroxylase: Characterization of a New P450 Gene Subfamily, Regulation, Chromosomal Mapping, and Molecular Analysis of the DA Rat Polymorphism. DNA and Cell Biology, 1987, 6, 149-161.	5. 2	139
49			

#	Article	IF	CITATIONS
55	Oral Benzo[<i>a</i>]pyrene: Understanding Pharmacokinetics, Detoxication, and Consequences— <i>Cyp1</i> Knockout Mouse Lines as a Paradigm. Molecular Pharmacology, 2013, 84, 304-313.	2.3	119
56	Targeted Knockout of Cyp1a1 Gene Does Not Alter Hepatic Constitutive Expression of Other Genes in the Mouse [Ah] Battery. Biochemical and Biophysical Research Communications, 2000, 267, 184-189.	2.1	115
57	Ten nucleotide differences, five of which cause amino acid changes, are associated with the Ah receptor locus polymorphism of C57BL/6 and DBA/2 mice. Pharmacogenetics and Genomics, 1993, 3, 312-321.	5.7	114
58	Human AH locus polymorphism and cancer: inducibility of CYP1A1 and other genes by combustion products and dioxin. Pharmacogenetics and Genomics, 1991, 1, 68-78.	5.7	111
59	Dioxin Increases Reactive Oxygen Production in Mouse Liver Mitochondria. Toxicology and Applied Pharmacology, 2002, 178, 15-21.	2.8	111
60	Dioxin Exposure Is an Environmental Risk Factor for Ischemic Heart Disease. Cardiovascular Toxicology, 2001, 1, 285-298.	2.7	110
61	Tissue- and cell type-specific expression of cytochrome P450 1A1 and cytochrome P450 1A2 mRNA in the mouse localized in situ hybridization. Biochemical Pharmacology, 1999, 58, 525-537.	4.4	109
62	Benzo[a]pyrene-Induced Toxicity: Paradoxical Protection in Cyplal(â^'/â^') Knockout Mice Having Increased Hepatic BaP–DNA Adduct Levels. Biochemical and Biophysical Research Communications, 2001, 289, 1049-1056.	2.1	109
63	Mouse cytosolic class 3 aldehyde dehydrogenase (Aldh3al). Pharmacogenetics and Genomics, 1999, 9, 569-580.	5.7	106
64	Cyplal(\hat{a}^{-}/\hat{a}^{-}) male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria. Toxicology and Applied Pharmacology, 2004, 196, 410-421.	2.8	103
65	Extreme discordant phenotype methodology: an intuitive approach to clinical pharmacogenetics. European Journal of Pharmacology, 2000, 410, 107-120.	3.5	102
66	Genetic Expression of Aryl Hydrocarbon Hydroxylase Induction. Journal of Biological Chemistry, 1974, 249, 5851-5859.	3.4	99
67	Differential Metabolism of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in Mice Humanized for GYP1A1 and GYP1A2. Chemical Research in Toxicology, 2005, 18, 1471-1478.	3.3	94
68	Transgenic Zebrafish as Sentinels for Aquatic Pollution. Annals of the New York Academy of Sciences, 2000, 919, 133-147.	3.8	93
69	GENETIC EPIDEMIOLOGY OF ENVIRONMENTAL TOXICITY AND CANCER SUSCEPTIBILITY: HUMAN ALLELIC POLYMORPHISMS IN DRUG-METABOLIZING ENZYME GENES, THEIR FUNCTIONAL IMPORTANCE, AND NOMENCLATURE ISSUES. Drug Metabolism Reviews, 1999, 31, 467-487.	3.6	92
70	Evidence in Rat and Mouse Liver for Temporal Control of Two Forms of Cytochrome P-450 Inducible by 2,3,7,8-Tetrachlorodibenzo-p-dioxin. FEBS Journal, 1978, 91, 449-456.	0.2	90
71	Protection of the Cyp1a2(â^'/â^') Null Mouse against Uroporphyria and Hepatic Injury Following Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 2001, 173, 89-98.	2.8	86
72	Suggestions for the nomenclature of human alleles: relevance to ecogenetics, pharmacogenetics and molecular epidemiology. Pharmacogenetics and Genomics, 2000, 10, 279-290.	5.7	83

#	Article	IF	CITATIONS
73	Search for an association between the human CYP1A2 genotype and CYP1A2 metabolic phenotype. Pharmacogenetics and Genomics, 2006, 16, 359-367.	1.5	81
74	Toward the evaluation of function in genetic variability: Characterizing human SNP frequencies and establishing BACâ€transgenic mice carrying the human CYP1A1_CYP1A2 locus. Human Mutation, 2005, 25, 196-206.	2.5	78
75	Importance of the route of administration for genetic differences in benzo[a]pyrene-induced in utero toxicity and teratogenicity. Teratology, 1984, 29, 35-47.	1.6	77
76	Isolation and characterization of full-length mouse cDNA and genomic clones of 3-methylcholanthrene-inducible cytochrome P1-450 and P3-450. Gene, 1984, 29, 281-292.	2.2	77
77	Update of the human secretoglobin (SCGB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily. Human Genomics, 2011, 5, 691.	2.9	75
78	Genetically mediated induction of drug-metabolizing enzymes associated with congenital defects in the mouse. Teratology, 1977, 16, 147-153.	1.6	73
79	Advances in pharmacogenomics and individualized drug therapy: exciting challenges that lie ahead. European Journal of Pharmacology, 2004, 500, 267-280.	3.5	71
80	Assignment of the human 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible cytochrome P1-450 gene to chromosome 15. Nucleic Acids Research, 1985, 13, 2009-2016.	14.5	70
81	Transcription factors and cancer: an overview. Toxicology, 2002, 181-182, 131-141.	4.2	70
82	SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Human Genomics, 2019, 13, 51.	2.9	68
83	The Ah receptor: Binding specificity only for foreign chemicals?. Biochemical Pharmacology, 1984, 33, 917-924.	4.4	66
84	Xenobiotic-metabolizing Cytochromes P450 Convert Prostaglandin Endoperoxide to Hydroxyheptadecatrienoic Acid and the Mutagen, Malondialdehyde. Journal of Biological Chemistry, 2000, 275, 11784-11790.	3.4	66
85	Mouse cytochrome P3-450: complete cDNA and amino acid sequence. Nucleic Acids Research, 1984, 12, 2917-2928.	14.5	63
86	Basal and inducible CYP1 mRNA quantitation and protein localization throughout the mouse gastrointestinal tract. Free Radical Biology and Medicine, 2008, 44, 570-583.	2.9	62
87	Human P3450: cDNA and complete amino acid sequence. Nucleic Acids Research, 1986, 14, 6773-6774.	14.5	61
88	4-Aminobiphenyl-Induced Liver and Urinary Bladder DNA Adduct Formation in Cyp1a2(- l -) and Cyp1a2(+ l +) Mice. Journal of the National Cancer Institute, 2003, 95, 1227-1237.	6.3	61
89	Phenotype of the <i> Cyp1a1 < /i > $1a2 < /i > / 1b1 < /i > (-/-)$ Triple-Knockout Mouse. Molecular Pharmacology, 2008, 73, 1844-1856.</i>	2.3	61
90	Interaction between the Ah receptor and proteins binding to the AP-1-like electrophile response element (EpRE) during murine phase II [Ah] battery gene expression. Biochemical Pharmacology, 1995, 50, 2057-2068.	4.4	60

#	Article	IF	CITATIONS
91	Generation of †humanized†hCYP1A1_1A2_Cyp1a1/1a2(â '/â ') mouse line. Biochemical and Biophysical Research Communications, 2007, 359, 635-642.	2.1	59
92	The MurineCyp1a-1Gene Negatively Regulates Its Own Transcription and that of Other Members of the Aromatic Hydrocarbon-Responsive [Ah] Gene Battery. Molecular Endocrinology, 1990, 4, 1773-1781.	3.7	58
93	[1] P450 gene nomenclature based on evolution. Methods in Enzymology, 1991, 206, 3-11.	1.0	58
94	Update on the human and mouse lipocalin (LCN) gene family, including evidence the mouse Mup cluster is result of an "evolutionary bloom― Human Genomics, 2019, 13, 11.	2.9	58
95	Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. Archives of Biochemistry and Biophysics, 1975, 166, 559-564.	3.0	57
96	Growth signal pathways. Nature, 1990, 347, 709-710.	27.8	56
97	The human dioxin-inducible NAD(P)H:quinone oxidoreductase cDNA-encoded protein expressed in COS-1 cells is identical to diaphorase 4. FEBS Journal, 1991, 195, 171-176.	0.2	54
98	ZIP14 and ZIP8 zinc/bicarbonate symporters in Xenopus oocytes: characterization of metal uptake and inhibition. Metallomics, 2012, 4, 1218.	2.4	54
99	Genetic Polymorphisms in Human Drug-Metabolizing Enzymes: Potential Uses of Reverse Genetics to Identify Genes of Toxicological Relevance. Critical Reviews in Toxicology, 1997, 27, 199-222.	3.9	52
100	Organ-Specific Roles of CYP1A1 during Detoxication of Dietary Benzo[<i>a</i>)pyrene. Molecular Pharmacology, 2010, 78, 46-57.	2.3	52
101	Comparison of mouse hepatic mitochondrial versus microsomal cytochromes P450 following TCDD treatment. Biochemical and Biophysical Research Communications, 2006, 342, 1375-1381.	2.1	51
102	Characterization of Cytochrome P2-450 (20-S) mRNA. Association with the P1-450 Genomic Gene and Differential Response to the Inducers 3-Methylcholanthrene and Isosafrole. FEBS Journal, 1983, 134, 13-18.	0.2	50
103	CYP1A2 protects against reactive oxygen production in mouse liver microsomes. Free Radical Biology and Medicine, 2004, 36, 605-617.	2.9	50
104	Contributions of the Three CYP1 Monooxygenases to Pro-Inflammatory and Inflammation-Resolution Lipid Mediator Pathways. Journal of Immunology, 2013, 191, 3347-3357.	0.8	50
105	Can personalized drug therapy be achieved? A closer look at pharmaco-metabonomics. Trends in Pharmacological Sciences, 2006, 27, 580-586.	8.7	49
106	Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice. Food and Chemical Toxicology, 2018, 113, 73-82.	3.6	48
107	Uncoupling-mediated generation of reactive oxygen by halogenated aromatic hydrocarbons in mouse liver microsomes. Free Radical Biology and Medicine, 2004, 36, 618-631.	2.9	47
108	Structural Gene Products of the Murine Ah Complex. FEBS Journal, 2005, 115, 585-594.	0.2	47

#	Article	IF	CITATIONS
109	For Dioxin-induced Birth Defects, Mouse or Human CYP1A2 in Maternal Liver Protects whereas Mouse CYP1A1 and CYP1B1 Are Inconsequential. Journal of Biological Chemistry, 2006, 281, 18591-18600.	3.4	47
110	Personalized medicine: Genetic risk prediction of drug response., 2017, 175, 75-90.		47
111	Role of CYP2A5 and 2G1 in Acetaminophen Metabolism and Toxicity in the Olfactory Mucosa of the Cyp1a2(â^'/a^')Mouse. Biochemical Pharmacology, 1998, 55, 1819-1826.	4.4	46
112	"Geneâ€Swap Knockâ€n―Cassette in Mice to Study Allelic Differences in Human Genes. Annals of the New York Academy of Sciences, 2000, 919, 148-170.	3.8	46
113	Analysis of human <i>CYP1A1</i> eight world populations. Human Mutation, 2010, 31, 27-40.	2.5	46
114	Activation of Transcription Factors in Zebrafish Cell Cultures by Environmental Pollutants. Archives of Biochemistry and Biophysics, 2000, 376, 320-327.	3.0	45
115	Oral benzo[a]pyreneâ€induced cancer: Two distinct types in different target organs depend on the mouse <i>Cyp1</i> genotype. International Journal of Cancer, 2010, 127, 2334-2350.	5.1	45
116	Birth defects and aplastic anemia: differences in polycyclic hydrocarbon toxicity associated with the Ah locus. Archives of Toxicology, 1977, 39-39, 109-132.	4.2	44
117	Negative regulation of the murine cytosolic aldehyde dehydrogenase-3 (Aldh-3c) gene by functional CYP1A1 and CYP1A2 proteins. Biochemical and Biophysical Research Communications, 1992, 187, 413-419.	2.1	44
118	Mice Deficient in the Gene for Cytochrome P450 (CYP)1A1 Are More Susceptible Than Wild-Type to Hyperoxic Lung Injury: Evidence for Protective Role of CYP1A1 Against Oxidative Stress. Toxicological Sciences, 2014, 141, 68-77.	3.1	43
119	<i>In Utero</i> and Lactational Exposure to PCBs in Mice: Adult Offspring Show Altered Learning and Memory Depending on <i>Cypla2</i> and <i>Ahr</i> Genotypes. Environmental Health Perspectives, 2011, 119, 1286-1293.	6.0	42
120	Regional linkage analysis of the dioxin-inducible P-450 gene family on mouse chromosome 9. Biochemical and Biophysical Research Communications, 1985, 130, 396-406.	2.1	41
121	Markedly Increased Constitutive CYP1A1 mRNA Levels in the Fertilized Ovum of the Mouse. Biochemical and Biophysical Research Communications, 1998, 251, 657-661.	2.1	40
122	Drug-Metabolizing Enzymes, Polymorphisms and Interindividual Response to Environmental Toxicants. Clinical Chemistry and Laboratory Medicine, 2000, 38, 857-61.	2.3	40
123	THE <i>Ah</i> PHENOTYPE. SURVEY OF FORTY-EIGHT RAT STRAINS AND TWENTY INBRED MOUSE STRAINS. Genetics, 1982, 100, 79-87.	2.9	38
124	Knock-In Mouse Lines Expressing either Mitochondrial or Microsomal CYP1A1: Differing Responses to Dietary Benzo[<i>a</i>)pyrene as Proof of Principle. Molecular Pharmacology, 2009, 75, 555-567.	2.3	35
125	Theophylline pharmacokinetics: comparison of Cyplal($\hat{a}^{\circ\prime}/\hat{a}^{\circ\prime}$) and Cypla2($\hat{a}^{\circ\prime}/\hat{a}^{\circ\prime}$) knockout mice, humanized hCYPlAl_lA2 knock-in mice lacking either the mouse Cyplal or Cypla2 gene, and Cypl(+/+) wild-type mice. Pharmacogenetics and Genomics, 2005, 15, 503-511.	1.5	34
126	Stable Expression of Mouse <i>Cyplal</i> hand Human <i>CYP1A2</i> cDNAs Transfected into Mouse Hepatoma Cells Lacking Detectable P450 Enzyme Activity. DNA and Cell Biology, 1990, 9, 425-436.	1.9	33

#	Article	IF	Citations
127	Toxic Chemical Depression of the Bone Marrow and Possible Aplastic Anemia Explainable on a Genetic Basis. Clinical Toxicology, 1980, 16, 99-122.	0.5	32
128	INDUCIBLE MONOOXYGENASE ACTIVITIES AND 3-METHYLCHOLANTHRENE-INITIATED TUMORIGENESIS IN MOUSE RECOMBINANT INBRED SUBLINES. Genetics, 1976, 83, 537-550.	2.9	32
129	Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Human Genomics, 2022, 16 , 1 .	2.9	32
130	Purification and characterization of a microsomal cytochrome P-450 with high activity of coumarin 7-hydroxylase from mouse lives. FEBS Journal, 1984, 144, 425-431.	0.2	31
131	Proposal for an allele nomenclature system based on the evolutionary divergence of haplotypes. Human Mutation, 2002, 20, 463-472.	2.5	29
132	Role of Protein Kinase C-mediated Protein Phosphorylation in Mitochondrial Translocation of Mouse CYP1A1, Which Contains a Non-canonical Targeting Signal. Journal of Biological Chemistry, 2006, 281, 30834-30847.	3.4	29
133	Tissue-Specific Induction of Mouse ZIP8 and ZIP14 Divalent Cation/Bicarbonate Symporters by, and Cytokine Response to, Inflammatory Signals. International Journal of Toxicology, 2014, 33, 246-258.	1.2	29
134	CYP1A1 and CYP1A2 expression: Comparing  humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines. Toxicology and Applied Pharmacology, 2009, 237, 119-126.	2.8	28
135	Decreased <i>Hnf-1 </i> Gene Expression in Mice Homozygous for a 1.2-CentiMorgan Deletion on Chromosome 7. DNA and Cell Biology, 1990, 9, 771-776.	1.9	27
136	Pharmacological rescue of the 14CoS/14CoS mouse: hepatocyte apoptosis is likely caused by endogenous oxidative stress. Free Radical Biology and Medicine, 2003, 35, 351-367.	2.9	27
137	Inter-individual susceptibility to environmental toxicants—A current assessment. Toxicology and Applied Pharmacology, 2005, 207, 34-42.	2.8	27
138	"Oxidative stress―response in liver of an untreated newborn mouse having a 1.2-centimorgan deletion on chromosome 7. Biochemical and Biophysical Research Communications, 1992, 182, 1160-1165.	2.1	26
139	Improved drug therapy: triangulating phenomics with genomics and metabolomics. Human Genomics, 2014, 8, 16.	2.9	26
140	Similarities between Mouse and Rat-Liver Microsomal Cytochromes P-450 Induced by 3-Methylcholanthrene. Evidence from Catalytic, Immunologic, and Recombinant DNA Studies. FEBS Journal, 1982, 122, 361-368.	0.2	25
141	Structure of the Mouse Cytochrome P1-450 Genomic Gene. FEBS Journal, 1983, 134, 19-25.	0.2	25
142	Update on genome completion and annotations: Protein Information Resource. Human Genomics, 2004, 1, 229.	2.9	25
143	Mouse lung CYP1A1 catalyzes the metabolic activation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Carcinogenesis, 2006, 28, 732-737.	2.8	25
144	Aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin enhances liver damage in bile duct-ligated mice. Toxicology, 2011, 280, 10-17.	4.2	25

#	Article	IF	CITATIONS
145	Mitochondrial targeting of mouse NQO1 and CYP1B1 proteins. Biochemical and Biophysical Research Communications, 2013, 435, 727-732.	2.1	25
146	Comparing Gene Expression during Cadmium Uptake and Distribution: Untreated versus Oral Cd-Treated Wild-Type and ZIP14 Knockout Mice. Toxicological Sciences, 2015, 143, 26-35.	3.1	25
147	Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Human Genetics, 2021, 140, 381-400.	3.8	25
148	ARYL HYDROCARBON HYDROXYLASE INDUCTION BY BENZO[a]ANTHRACENE: REGULATORY GENE LOCALIZED TO THE DISTAL PORTION OF MOUSE CHROMOSOME <i>17</i>). Genetics, 1984, 107, 447-461.	2.9	25
149	Possible Role of Cytochromes P450 in Lupus Erythematosus and Related Disorders. Lupus, 1994, 3, 473-478.	1.6	24
150	NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I. Toxicology and Applied Pharmacology, 2012, 265, 360-367.	2.8	24
151	Zinc- and bicarbonate-dependent ZIP8 transporter mediates selenite uptake. Oncotarget, 2016, 7, 35327-35340.	1.8	24
152	Decrease in 4-Aminobiphenyl-Induced Methemoglobinemia in Cyp1a2(\hat{a}^{*}/\hat{a}^{*}) Knockout Mice. Toxicology and Applied Pharmacology, 2002, 181, 32-37.	2.8	23
153	Genetic Risk Prediction: Individualized Variability in Susceptibility to Toxicants. Annual Review of Pharmacology and Toxicology, 2013, 53, 355-375.	9.4	23
154	Protective role of cytochrome P450 1A1 (CYP1A1) against benzo[a]pyrene-induced toxicity in mouse aorta. Toxicology, 2014, 316, 34-42.	4.2	23
155	Use of fetal cell culture as an experimental system for predicting drug metabolism in the intact animal. Clinical Pharmacology and Therapeutics, 1973, 14, 693-699. Tryphostin AG879, a tyrosine kinase inhibitor: prevention of transcriptional activation of the	4.7	22
156	electrophile and the aromatic hydrocarbon response elements11Abbreviations: EPRE, electrophile response element; AHRE, aromatic hydrocarbon response element; MRE, metal response element; Nqo1 and NQO1, mouse NAD(P)H:quinone oxidoreductase [also called NMO1, quinone reductase, DT-diaphorase] gene and mRNA; Cyp1a1 and CYP1A1, mouse cytochrome P450 1A1 gene and mRNA; Mt1 and	4.4	22
157	MTI mouse metallothionein-1 gene and mRNA Riochemical Pharmacology, 2001, 61, 215-225. Binding of polycyclic aromatic hydrocarbons to DNA: Comparison with mutagenesis and tumorigenesis. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1980, 6, 1009-1020.	2.3	21
158	Transcriptional derepression of the murine <i>Cyp1aâ€4</i> gene by mevinolin. FASEB Journal, 1992, 6, 777-785.	0.5	21
159	In Utero and Lactational Exposure to a Complex Mixture of Polychlorinated Biphenyls: Toxicity in Pups Dependent on the Cyp1a2 and Ahr Genotypes. Toxicological Sciences, 2011, 119, 189-208.	3.1	21
160	Human <i>P</i> -450 genes: evolution, regulation and possible role in carcinogenesis. Biochemical Society Transactions, 1987, 15, 586-589.	3.4	20
161	Hepatic ZIP8 deficiency is associated with disrupted selenium homeostasis, liver pathology, and tumor formation. American Journal of Physiology - Renal Physiology, 2018, 315, G569-G579.	3.4	20
162	Effects of environmental chemicals on the genetic regulation of microsomal enzyme systems. Clinical Pharmacology and Therapeutics, 1977, 22, 640-658.	4.7	19

#	Article	IF	Citations
163	Murine mdr-1, mdr-2, and mdr-3 Gene Expression: No Coinduction with the Cypla-1 and Nmo-1 Genes in Liver by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. DNA and Cell Biology, 1991, 10, 433-441.	1.9	19
164	CYTOCHROME P450 KNOCKOUT MICE: NEW TOXICOLOGICAL MODELS. Clinical and Experimental Pharmacology and Physiology, 1998, 25, 783-787.	1.9	18
165	Generation of a â€~humanized' hCYP1A1_1A2_Cyp1a1/1a2(â^'/â^')_Ahrd mouse line harboring the poor-affini aryl hydrocarbon receptor. Biochemical and Biophysical Research Communications, 2008, 376, 775-780.	ty 2.1	18
166	Genes Encoding Drug-Metabolizing Enzymes: Possible Role in Human Disease. , 1988, 43, 45-64.		18
167	Trout CYP1A3 Gene: Recognition of Fish DNA Motifs by Mouse Regulatory Proteins. Marine Biotechnology, 1999, 1, 155-166.	2.4	17
168	cDNA and complete amino acid sequence of mouse P2450: allelic variant of mouse P3450 gene. Nucleic Acids Research, 1986, 14, 6765-6766.	14.5	16
169	Comparison of gene expression in cell culture to that in the intact animal: relevance to drugs and environmental toxicants. Focus on "Development of a transactivator in hepatoma cells that allows expression of phase I, phase II, and chemical defense genes― American Journal of Physiology - Cell Physiology, 2006, 290, C37-C41.	4.6	16
170	Ecogenetics: From Ecology To Health. Toxicology and Industrial Health, 1997, 13, 163-192.	1.4	15
171	Comparison of Human Mouse P1450 Upstream Regulatory Sequences in Liver- and Nonliver-Derived Cell Lines. Molecular Endocrinology, 1987, 1, 312-320.	3.7	14
172	7H-dibenzo[c,g]carbazole metabolism by the mouse and human CYP1 family of enzymes. Carcinogenesis, 2007, 28, 1371-1378.	2.8	14
173	Localization of UDP glucuronosyltransferase gene(s) on mouse chromosome 5. Somatic Cell and Molecular Genetics, 1987, 13, 179-182.	0.7	13
174	Evolution of the P450 gene superfamily and regulation of the murine <i>Cyplal</i> gene. Biochemical Society Transactions, 1990, 18, 7-10.	3.4	13
175	In utero gene expression in the Slc39a8(neo/neo) knockdown mouse. Scientific Reports, 2018, 8, 10703.	3.3	13
176	Selective mouse breeding for short ethanol sleep time has led to high levels of hepatic aromatic hydrocarbon (Ah) receptor. Biochemical Pharmacology, 1989, 38, 3565-3572.	4.4	12
177	Uroporphyria and hepatic carcinogenesis induced by polychlorinated biphenyls–iron interaction: Absence in the Cyp1a2(â^'/â^') knockout mouse. Biochemical and Biophysical Research Communications, 2005, 331, 147-152.	2.1	12
178	The murine aromatic hydrocarbon responsiveness locus: A comparison of receptor levels and several inducible enzyme activities among recombinant inbred lines. Journal of Biochemical Toxicology, 1986, 1, 1-14.	0.4	11
179	Oral benzo[<i>a</i>]pyrene in <i>Cyp1a1/1b1</i> (â€"/â€") doubleâ€knockout mice: Microarray analysis during squamous cell carcinoma formation in preputial gland duct. International Journal of Cancer, 2013, 132, 2065-2075.	5.1	11
180	Drug metabolism and signal transduction: Possible role of Ah receptor and arachidonic acid cascade in protection from ethanol toxicity., 1994, 71, 231-240.		11

#	Article	IF	CITATIONS
181	Update on human genome completion and annotations: Gene nomenclature. Human Genomics, 2003, 1, 66.	2.9	10
182	Comparison of oxidative stress response parameters in newborn mouse liver versus simian virus 40 (SV40)-transformed hepatocyte cell lines. Biochemical Pharmacology, 2000, 59, 703-712.	4.4	9
183	Genetic Differences in Lethality of Newborn Mice Treated In Utero with Coplanar versus Non-Coplanar Hexabromobiphenyl. Toxicological Sciences, 2006, 89, 454-464.	3.1	9
184	Inbreeding and epigenetics: beneficial as well as deleterious effects. Nature Reviews Genetics, 2010, 11, 662-662.	16.3	9
185	Phospholipase A2 Activation and Increases in Specific Prostaglandins in the Oxidatively Stressed 14CoS/14CoS Mouse Hepatocyte Line. Biochemical Pharmacology, 1998, 55, 193-200.	4.4	8
186	Association between susceptibility to dibenzanthracene-induced fibrosarcoma formation and the Ahlocus. International Journal of Cancer, 1983, 32, 765-768.	5.1	7
187	Expression of the chloramphenicol acetyltransferase (CAT) reporter gene by the murine Cypla-2 (cytochrome P3450) promoter in hepatoma cell cultures. Biochemical and Biophysical Research Communications, 1990, 172, 1109-1115.	2.1	7
188	Identification of genetic differences in drug metabolism: Prediction of individual risk of toxicity or cancer. Hepatology, 1991, 14, 398-401.	7.3	6
189	Balancer-Cre transgenic mouse germ cells direct the incomplete resolution of a tri-loxP-targeted Cyp1a1 allele, producing a conditional knockout allele. Biochemical and Biophysical Research Communications, 2003, 312, 494-499.	2.1	6
190	Head-and-neck squamous cell carcinoma risk in smokers: no association detected between phenotype and AHR, CYP1A1, CYP1A2, or CYP1B1 genotype. Human Genomics, 2016, 10, 39.	2.9	6
191	THE <i>Ah</i> LOCUS: BIOCHEMICAL BASIS FOR GENETIC DIFFERENCES IN BRAIN TUMOR FORMATION IN MICE. Genetics, 1979, 92, 1205-1210.	2.9	6
192	Reply to the letter of doctors Shepard and Fantel. Teratology, 1980, 22, 349-350.	1.6	5
193	Human P450IA1 upstream regulatory sequences expressing the chloramphenicol acetyltransferase gene. Effect of Ha-MSV enhancer and comparison of transient with stable transformation assays. Biochemical and Biophysical Research Communications, 1987, 148, 857-863.	2.1	5
194	Cyclophilin nomenclature problems, or, 'a visit from the sequence police'. Human Genomics, 2004, 1, 381.	2.9	5
195	Human drug metabolism polymorphisms: Use of recombinant DNA techniques. , 1987, 33, 11-17.		3
196	Drug Metabolic Enzymes in Developmental Toxicology. Toxicological Sciences, 1996, 34, 165-175.	3.1	3
197	Role of host susceptibility to toxicity and cancer caused by pesticides: Cytochromes P450. Journal of Biochemical and Molecular Toxicology, 2005, 19, 184-186.	3.0	3
198	What do animal experiments tell us that inÂvitro systems cannot? The Human Toxome Project. Regulatory Toxicology and Pharmacology, 2016, 75, 1-4.	2.7	3

#	Article	IF	CITATIONS
199	Transcriptional Start Site in the Mouse <i>Cyplal </i> (Cytochrome P ₁ 450) Gene. DNA and Cell Biology, 1989, 8, 527-534.	5.2	2
200	Letter to the editor for "Update of the human and mouse Fanconi anemia genes― Human Genomics, 2016, 10, 25.	2.9	2
201	Cloning genes that encode inducible forms of P-450. Biochemical Society Transactions, 1984, 12, 99-101.	3.4	1
202	Cellular Responses To Oxidative Stress. , 1990, , 69-84.		1
203	The importance of genetics in the metabolism and fate of mutagens and promutagens. Journal of Environmental Science and Health Part A, Environmental Science and Engineering, 1982, 17, 559-566.	0.1	0
204	Assignment of dioxin-inducible cytochrome P-450 gene family to Chinese hamster chromosome 4. Somatic Cell and Molecular Genetics, 1985, 11, 391-395.	0.7	0
205	Identification of genetic differences in debrisoquine hydroxylase activity. Hepatology, 1992, 15, 360-360.	7.3	0
206	SNP-chips versus CNV patterns: Thinking outside the box. Human Mutation, 2009, 30, v-v.	2.5	0
207	Pharmacogenetics and Pharmacogenomics., 2013,, 1-27.		0
208	Why are keratins important?. Human Genomics, 2022, 16, 4.	2.9	0