
Y Fukada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12025598/publications.pdf Version: 2024-02-01

Υ Ειικληλ

#	Article	IF	CITATIONS
1	Identification of Nonvisual Photomotor Response Cells in the Vertebrate Hindbrain. Journal of Neuroscience, 2013, 33, 3834-3843.	3.6	98
2	Ectopic expression of coneâ€specific Gâ€proteinâ€coupled receptor kinase GRK7 in zebrafish rods leads to lower photosensitivity and altered responses. Journal of Physiology, 2011, 589, 2321-2348.	2.9	23
3	Light-dependent and circadian clock-regulated activation of sterol regulatory element-binding protein, X-box-binding protein 1, and heat shock factor pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4864-4869.	7.1	64
4	Nonlinear partial differential equations and applications: Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15456-15461.	7.1	50
5	Preparation and Characterization of Monoclonal Antibodies Specific for Lauroylated Isoform of Bovine Transducin α-Subunit: Immunohistochemical Analysis of Bovine Retinas. Journal of Neurochemistry, 2002, 66, 2188-2196.	3.9	2
6	Cloning of mouse BMAL2 and its daily expression profile in the suprachiasmatic nucleus: a remarkable acceleration of Bmal2 sequence divergence after Bmal gene duplication. Neuroscience Letters, 2001, 300, 111-114.	2.1	40
7	Chicken pineal Cry genes: light-dependent up-regulation of cCry1 and cCry2 transcripts. Neuroscience Letters, 2001, 313, 13-16.	2.1	71
8	Circadian and photic regulation of MAP kinase by Ras- and protein phosphatase-dependent pathways in the chick pineal gland. FEBS Letters, 2001, 491, 71-75.	2.8	35
9	Regulatory Mechanism for the Stability of the Meta II Intermediate of Pinopsin. Journal of Biochemistry, 2001, 129, 329-334.	1.7	7
10	Rod-Type Transducin α-Subunit Mediates a Phototransduction Pathway in the Chicken Pineal Gland. Journal of Neurochemistry, 2001, 75, 217-224.	3.9	28
11	Chicken pineal clock genes: implication of BMAL2 as a bidirectional regulator in circadian clock oscillation. Genes To Cells, 2001, 6, 825-836.	1.2	78
12	Photoreception and circadian clock system of the chicken pineal gland. Microscopy Research and Technique, 2001, 53, 72-80.	2.2	35
13	Light-induced phase-delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8089-8094.	7.1	97
14	Effect of Brefeldin A on Melatonin Secretion of Chick Pineal Cells. Journal of Biochemistry, 2001, 129, 51-59.	1.7	11
15	[17] Photoreceptors in pineal gland and brain: Cloning, localization, and overexpression. Methods in Enzymology, 2000, 316, 278-291.	1.0	8
16	[31] Functional analysis of farnesylation and methylation of transducin. Methods in Enzymology, 2000, 316, 465-481.	1.0	11
17	Diversity of opsin immunoreactivities in the extraretinal tissues of four anuran amphibians. , 2000, 286, 136-142.		22
18	Phototransduction molecules in the pigeon deep brain. Journal of Comparative Neurology, 2000, 428, 138-144.	1.6	37

Υ Γυκάδα

#	Article	IF	CITATIONS
19	Colocalization of pinopsin with two types of G-protein α-subunits in the chicken pineal gland. Cell and Tissue Research, 2000, 299, 245-251.	2.9	15
20	Vertebrate Ancient- <i>Long</i> Opsin: A Green-Sensitive Photoreceptive Molecule Present in Zebrafish Deep Brain and Retinal Horizontal Cells. Journal of Neuroscience, 2000, 20, 2845-2851.	3.6	138
21	Role of Circadian Activation of Mitogen-Activated Protein Kinase in Chick Pineal Clock Oscillation. Journal of Neuroscience, 2000, 20, 986-991.	3.6	74
22	Circadian Activation of Bullfrog Retinal Mitogen-activated Protein Kinase Associates with Oscillator Function. Journal of Biological Chemistry, 2000, 275, 37078-37085.	3.4	22
23	Colocalization of pinopsin with two types of G-protein α-subunits in the chicken pineal gland. Cell and Tissue Research, 2000, 299, 245-251.	2.9	17
24	Differentiation of pinopsin-immunoreactive cells in the developing quail pineal organ: an in-vivo and in-vitro immunohistochemical study. Cell and Tissue Research, 1999, 296, 667-671.	2.9	14
25	Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Molecular Brain Research, 1999, 73, 110-118.	2.3	129
26	Chimeric Nature of Pinopsin between Rod and Cone Visual Pigmentsâ€. Biochemistry, 1999, 38, 14738-14745.	2.5	41
27	Characterization of N-acylation of GoÎ \pm purified from bovine retinas. NeuroReport, 1999, 10, 2999-3002.	1.2	0
28	Nonâ€Visual Photoreception by a Variety of Vertebrate Opsins. Novartis Foundation Symposium, 1999, 224, 265-290.	1.1	31
29	Identification of rhodopsin in the pigeon deep brain. FEBS Letters, 1998, 424, 53-56.	2.8	76
30	A deep brain photoreceptive molecule in the toad hypothalamus. FEBS Letters, 1998, 424, 69-72.	2.8	49
31	Specific Isoprenyl Group Linked to Transducin γ-Subunit Is a Determinant of Its Unique Signaling Properties among G-Proteinsâ€. Biochemistry, 1998, 37, 9843-9850.	2.5	46
32	Lightâ€Dependent Expression of Pinopsin Gene in Chicken Pineal Gland. Journal of Neurochemistry, 1998, 70, 908-913.	3.9	28
33	Presence of Two Rhodopsin Intermediates Responsible for Transducin Activationâ€. Biochemistry, 1997, 36, 14173-14180.	2.5	55
34	Immunocytochemical identification of pinopsin in pineal glands of chicken and pigeon. Molecular Brain Research, 1997, 50, 190-196.	2.3	52
35	Phototransduction cascade and circadian oscillator in chicken pineal gland. Journal of Pineal Research, 1997, 22, 145-151.	7.4	30
36	Molecular cloning of heterotrimeric G-protein α-subunits in chicken pineal gland. Journal of Molecular Evolution, 1997, 44, S91-S97.	1.8	12

Υ Fukada

#	Article	IF	CITATIONS
37	Immunoelectron-microscopic investigation of the subcellular localization of pinopsin in the pineal organ of the chicken. Cell and Tissue Research, 1997, 289, 235-241.	2.9	24
38	Calcium-bound recoverin targets rhodopsin kinase to membranes to inhibit rhodopsin phosphorylation. FEBS Letters, 1996, 384, 227-230.	2.8	27
39	MEKA/Phosducin Attenuates Hydrophobicity of Transducin βγ Subunits without Binding to Farnesyl Moiety. Biochemical and Biophysical Research Communications, 1996, 223, 587-591.	2.1	14
40	Molecular Properties of Chimerical Mutants of Gecko Blue and Bovine Rhodopsin. Biochemistry, 1996, 35, 2625-2629.	2.5	33
41	[9] Prenylation and carboxylmethylation of G-protein γ subunit. Methods in Enzymology, 1995, 250, 91-105.	1.0	21
42	Primary Structure of a γ Subunit of G Protein, γ12, and Its Phosphorylation by Protein Kinase C. Journal of Biological Chemistry, 1995, 270, 29469-29475.	3.4	76
43	Role of Heterogeneous N-terminal Acylation of Recoverin in Rhodopsin Phosphorylation. Journal of Biological Chemistry, 1995, 270, 15459-15462.	3.4	28
44	Purification and low temperature spectroscopy of gecko visual pigments green and blue. Biochemistry, 1995, 34, 1096-1106.	2.5	22
45	Molecular basis for tetrachromatic color vision. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 112, 405-414.	1.6	16
46	Localization of iodopsin and rod-opsin immunoreactivity in the retina and pineal complex of the river lamprey, Lampetra japonica. Cell and Tissue Research, 1994, 278, 1-10.	2.9	31
47	Pinopsin is a chicken pineal photoreceptive molecule. Nature, 1994, 372, 94-97.	27.8	331
48	Circular Dichroism of Metaiodopsin II and Its Binding to Transducin: A Comparative Study between Meta II Intermediates of Iodopsin and Rhodopsin. Biochemistry, 1994, 33, 4940-4946.	2.5	54
49	Visual pigments in the pineal complex of the Japanese quail, Japanese grass lizard and bullfrog: Immunocytochemistry and HPLC analysis. Tissue and Cell, 1994, 26, 101-113.	2.2	43
50	What Makes Red Visual Pigments Red? A Resonance Raman Microprobe Study of Retinal Chromophore Structure in Iodopsin. Biochemistry, 1994, 33, 2151-2160.	2.5	61
51	ls Chicken Green-Sensitive Cone Visual Pigment a Rhodopsin-like Pigment? A Comparative Study of the Molecular Properties between Chicken Green and Rhodopsin. Biochemistry, 1994, 33, 9040-9044.	2.5	77
52	Effects of carboxyl methylation of photoreceptor G protein gamma-subunit in visual transduction Journal of Biological Chemistry, 1994, 269, 5163-5170.	3.4	99
53	Characterization of interactions between transducin alpha/beta gamma-subunits and lipid membranes Journal of Biological Chemistry, 1994, 269, 30358-30363.	3.4	54
54	Localization of iodopsin and rod-opsin immunoreactivity in the retina and pineal complex of the river lamprey, Lampetra japonica. Cell and Tissue Research, 1994, 278, 1-10.	2.9	4

Υ Fukada

#	Article	IF	CITATIONS
55	Immunoreactivities to rhodopsin and rod/cone transducin antisera in the retina, pineal complex and deep brain of the bullfrog, Rana catesbeiana. Zoological Science, 1994, 11, 675-80.	0.7	29
56	Characterization of interactions between transducin alpha/beta gamma-subunits and lipid membranes. Journal of Biological Chemistry, 1994, 269, 30358-63.	3.4	54
57	Effects of carboxyl methylation of photoreceptor G protein gamma-subunit in visual transduction. Journal of Biological Chemistry, 1994, 269, 5163-70.	3.4	75
58	Identification of the α-Subunits of Rod and Cone Transducin in Chicken Photoreceptor Cells. Experimental Eye Research, 1993, 57, 135-140.	2.6	11
59	Nanosecond laser photolysis of iodopsin, a chicken red-sensitive cone visual pigment. Biochemistry, 1993, 32, 10832-10838.	2.5	38
60	Activation by G protein beta gamma subunits of beta-adrenergic and muscarinic receptor kinase Journal of Biological Chemistry, 1993, 268, 7753-7758.	3.4	79
61	Purification of four forms of the beta gamma subunit complex of G proteins containing different gamma subunits Journal of Biological Chemistry, 1993, 268, 20512-20519.	3.4	41
62	Purification of four forms of the beta gamma subunit complex of G proteins containing different gamma subunits. Journal of Biological Chemistry, 1993, 268, 20512-9.	3.4	35
63	Activation by G protein beta gamma subunits of beta-adrenergic and muscarinic receptor kinase. Journal of Biological Chemistry, 1993, 268, 7753-8.	3.4	68
64	Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5932-5936.	7.1	331
65	Cone visual pigments are present in gecko rod cells Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 6841-6845.	7.1	116
66	Differentiation of both rod and cone types of photoreceptors in the in vivo and in vitro developing pineal glands of the quail. Developmental Brain Research, 1992, 65, 85-92.	1.7	42
67	Lipid modification at the N terminus of photoreceptor G-protein α-subunit. Nature, 1992, 359, 749-752.	27.8	251
68	PHOTOSENSITIVITIES OF IODOPSIN AND RHODOPSINS. Photochemistry and Photobiology, 1992, 56, 995-1001.	2.5	47
69	PHOTORECEPTOR CELL TYPES IN THE RETINA OF VARIOUS VERTEBRATE SPECIES: IMMUNOCYTOCHEMISTRY WITH ANTIBODIES AGAINST RHODOPSIN AND IODOPSIN. Photochemistry and Photobiology, 1992, 56, 1157-1166.	2.5	18
70	Identification and isolation of common and tissue-specific geranylgeranylated gamma subunits of guanine-nucleotide-binding regulatory proteins in various tissues. FEBS Journal, 1992, 210, 1061-1069.	0.2	22
71	Carboxyl methylation and farnesylation of transducin gamma-subunit synergistically enhance its coupling with metarhodopsin II EMBO Journal, 1991, 10, 3669-3674.	7.8	125
72	Structure and function of Î ³ -subunit of photoreceptor G-protein (transducin). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 100, 433-438.	0.2	2

Υ Γυκάδα

#	Article	IF	CITATIONS
73	Carboxyl methylation and farnesylation of transducin gamma-subunit synergistically enhance its coupling with metarhodopsin II. EMBO Journal, 1991, 10, 3669-74.	7.8	18
74	Farnesylated Î ³ -subunit of photoreceptor G protein indispensable for GTP-binding. Nature, 1990, 346, 658-660.	27.8	480
75	Immunohistochemical localization of iodopsin in the retina of the chicken and Japanese quail. Cell and Tissue Research, 1990, 261, 397-401.	2.9	29
76	Functional heterogeneity of βγ-subunit of frog transducin. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 95, 763-765.	0.2	1
77	Bathoiodopsin, a primary intermediate of iodopsin at physiological temperature Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 8908-8912.	7.1	31
78	Effects of chloride on chicken iodopsin and the chromophore transfer reactions from iodopsin to scotopsin and B-photopsin. Biochemistry, 1990, 29, 5843-5848.	2.5	50
79	Phosphorylation of iodopsin, chicken red-sensitive cone visual pigment. Biochemistry, 1990, 29, 10102-10106.	2.5	35
80	Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogs. Biochemistry, 1990, 29, 3133-3140.	2.5	62
81	The primary structure of iodopsin, a chicken red-sensitive cone pigment. FEBS Letters, 1990, 272, 128-132.	2.8	65
82	Binding of GTP to transducin is not inhibited by arrestin and phosphorylated rhodopsin. FEBS Letters, 1990, 261, 419-422.	2.8	9
83	A specific βγ-subunit of transducin stimulates ADP-ribosylation of the α-subunit by pertussis toxin. Biochemical and Biophysical Research Communications, 1990, 167, 1235-1241.	2.1	41
84	Localization of iodopsin in the chick retina during in vivo and in vitro cone differentiation. Investigative Ophthalmology and Visual Science, 1990, 31, 1466-73.	3.3	13
85	Effect of chloride ion on the thermal decay process of the batho intermediate of iodopsin at low temperature. Biochemistry, 1989, 28, 9412-9416.	2.5	41
86	Identification of a retina-specific MEKA protein as a 33 K protein. Biochemical and Biophysical Research Communications, 1989, 162, 1063-1068.	2.1	20
87	Chicken red-sensitive cone visual pigment retains a binding domain for transducin. FEBS Letters, 1989, 246, 69-72.	2.8	20
88	Monoclonal antibodies to chicken iodopsin. Experimental Eye Research, 1989, 48, 281-293.	2.6	28
89	Purification of cone visual pigments from chicken retina. Biochemistry, 1989, 28, 8848-8856.	2.5	128
90	βγ-Subunit of Bovine Transducin Composed of Two Components with Distinctive γ-Subunits. Journal of Biological Chemistry, 1989, 264, 5937-5943.	3.4	64

Y Fukada

#	Article	IF	CITATIONS
91	Beta gamma-subunit of bovine transducin composed of two components with distinctive gamma-subunits. Journal of Biological Chemistry, 1989, 264, 5937-43.	3.4	57
92	Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin. Biochemistry, 1984, 23, 5826-5832.	2.5	148
93	Activation of phosphodiesterase by rhodopsin and its analogues. Biophysics of Structure and Mechanism, 1983, 9, 245-258.	1.9	18
94	Activation of phosphodiesterase by chicken iodopsin. FEBS Letters, 1982, 149, 117-122.	2.8	14
95	Activation of phosphodiesterase in frog rod outer segment by rhodopsin analogues. BBA - Proteins and Proteomics, 1982, 708, 112-117.	2.1	12
96	Activation of phosphodiesterase in frog rod outer segment by an intermediate of rhodopsin photolysis. I Biochimica Et Biophysica Acta - General Subjects, 1981, 675, 188-194.	2.4	28
97	Activation of phosphodiesterase in frog rod outer segment by an intermediate of rhodopsin photolysis. II. Biochimica Et Biophysica Acta - General Subjects, 1981, 675, 195-200.	2.4	46