Yuan-Hung Lo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12025195/publications.pdf

Version: 2024-02-01

516710 839539 1,917 19 16 18 h-index citations g-index papers 22 22 22 3871 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015, 528, 560-564.	27.8	818
2	CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature, 2020, 580, 136-141.	27.8	203
3	The Intestinal Stem Cell Niche: Homeostasis and Adaptations. Trends in Cell Biology, 2018, 28, 1062-1078.	7.9	165
4	Applications of organoids for cancer biology and precision medicine. Nature Cancer, 2020, 1, 761-773.	13.2	93
5	Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration. Stem Cell Reports, 2015, 4, 209-225.	4.8	76
6	A CRISPR/Cas9-Engineered <i>ARID1A</i> -Deficient Human Gastric Cancer Organoid Model Reveals Essential and Nonessential Modes of Oncogenic Transformation. Cancer Discovery, 2021, 11, 1562-1581.	9.4	75
7	Targeting Tyrosine Phosphorylation of PCNA Inhibits Prostate Cancer Growth. Molecular Cancer Therapeutics, 2011, 10, 29-36.	4.1	73
8	Sox4 Promotes Atoh1-Independent Intestinal Secretory Differentiation Toward Tuft and Enteroendocrine Fates. Gastroenterology, 2018, 155, 1508-1523.e10.	1.3	66
9	Transcriptional Regulation by ATOH1 and its Target SPDEF inÂtheÂlntestine. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 51-71.	4.5	62
10	Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Reports, 2018, 22, 1003-1015.	6.4	54
11	SPDEF Functions as a Colorectal Tumor Suppressor by Inhibiting \hat{I}^2 -Catenin Activity. Gastroenterology, 2013, 144, 1012-1023.e6.	1.3	40
12	Interaction of Proliferation Cell Nuclear Antigen (PCNA) with c-Abl in Cell Proliferation and Response to DNA Damages in Breast Cancer. PLoS ONE, 2012, 7, e29416.	2.5	37
13	SPDEF Induces Quiescence of Colorectal Cancer Cells by \hat{A} Changing the Transcriptional Targets of \hat{I}^2 -catenin. Gastroenterology, 2017, 153, 205-218.e8.	1.3	34
14	<i>Growth Factor–Independent 1</i> Is a Tumor Suppressor Gene in Colorectal Cancer. Molecular Cancer Research, 2019, 17, 697-708.	3.4	34
15	The ErbB3 receptor tyrosine kinase negatively regulates Paneth cells by PI3K-dependent suppression of Atoh1. Cell Death and Differentiation, 2017, 24, 855-865.	11.2	31
16	Epidermal Growth Factor Receptor Protects Proliferating Cell Nuclear Antigen from Cullin 4A Protein-mediated Proteolysis. Journal of Biological Chemistry, 2012, 287, 27148-27157.	3.4	25
17	Immune organoids: from tumor modeling to precision oncology. Trends in Cancer, 2022, 8, 870-880.	7.4	16
18	Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet. Biochemical and Biophysical Research Communications, 2013, 430, 43-48.	2.1	10

Yuan-Hung Lo

#	Article	IF	CITATIONS
19	LIMITING THE TOXICITY OF CHEMOTHERAPY BY ENHANCING REGENERATION OF INTESTINAL STEM CELLS. FASEB Journal, 2018, 32, 872.2.	0.5	0