Muhammad M Mohiuddin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12023238/publications.pdf

Version: 2024-02-01

24 papers 1,124 citations

623734 14 h-index 610901 24 g-index

24 all docs

24 docs citations

times ranked

24

774 citing authors

#	Article	IF	CITATIONS
1	Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nature Communications, 2016, 7, 11138.	12.8	351
2	Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1106-1114.	0.8	111
3	Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathwayâ€regulatory protein. Xenotransplantation, 2015, 22, 310-316.	2.8	79
4	Role of antiâ€CD40 antibodyâ€mediated costimulation blockade on nonâ€Gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pigâ€toâ€baboon model. Xenotransplantation, 2014, 21, 35-45.	2.8	77
5	Current status of pig heart xenotransplantation. International Journal of Surgery, 2015, 23, 234-239.	2.7	71
6	Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation, 2022, 29, e12744.	2.8	64
7	Regulation of Clinical Xenotransplantation—Time for a Reappraisal. Transplantation, 2017, 101, 1766-1769.	1.0	57
8	Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation, 2019, 26, e12465.	2.8	43
9	Antibody-mediated accommodation of heart grafts expressing an incompatible carbohydrate antigen. Transplantation, 2003, 75, 258-262.	1.0	42
10	Characterization and expansion of baboon CD4 ⁺ CD25 ⁺ Treg cells for potential use in a nonâ€human primate xenotransplantation model. Xenotransplantation, 2007, 14, 298-308.	2.8	39
11	Mouse-heart grafts expressing an incompatible carbohydrate antigen. II. Transition from accommodation to tolerance. Transplantation, 2004, 77, 366-373.	1.0	25
12	Exâ€vivo expanded baboon CD4 ⁺ CD25 ^{Hi} Treg cells suppress baboon antiâ€pig T and B cell immune response. Xenotransplantation, 2012, 19, 102-111.	2.8	21
13	Encouraging experience using multiâ€transgenic xenografts in a pigâ€toâ€baboon cardiac xenotransplantation model. Xenotransplantation, 2017, 24, e12330.	2.8	21
14	Blood Cardioplegia Induction, Perfusion Storage and Graft Dysfunction in Cardiac Xenotransplantation. Frontiers in Immunology, 2021, 12, 667093.	4.8	20
15	<scp>CD</scp> 4+ <scp>CD</scp> 25 ^{Hi} FoxP3+ regulatory T cells in longâ€ŧerm cardiac xenotransplantation. Xenotransplantation, 2018, 25, e12379.	2.8	17
16	Heterotopic Porcine Cardiac Xenotransplantation in the Intra-Abdominal Position in a Non-Human Primate Model. Scientific Reports, 2020, 10, 10709.	3.3	15
17	Clinical Xenotransplantation of Organs: Why Aren't We There Yet?. PLoS Medicine, 2007, 4, e75.	8.4	14
18	Heart xenotransplantation. Current Opinion in Organ Transplantation, 2017, 22, 549-554.	1.6	13

#	Article	IF	CITATIONS
19	Regulatory barriers to xenotransplantation. Current Opinion in Organ Transplantation, 2019, 24, 522-526.	1.6	13
20	Cardiac Xenotransplantation: Progress in Preclinical Models and Prospects for Clinical Translation. Transplant International, 2022, 35, 10171.	1.6	10
21	Xenotransplantation: A Step Closer to Clinical Reality?. Transplantation, 2019, 103, 453-454.	1.0	7
22	Recent advances in porcine cardiac xenotransplantation: from aortic valve replacement to heart transplantation. Expert Review of Cardiovascular Therapy, 2022, 20, 597-608.	1.5	6
23	Consideration of appropriate clinical applications for cardiac xenotransplantation. Clinical Transplantation, 2018, 32, e13330.	1.6	4
24	Preclinical rationale and current pathways to support the first human clinical trials in cardiac xenotransplantation. Human Immunology, 2023, 84, 34-42.	2.4	4