Matthew Slattery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12020212/publications.pdf

Version: 2024-02-01

35 papers 4,494 citations

331670 21 h-index 36 g-index

42 all docs 42 docs citations

42 times ranked 9312 citing authors

#	Article	IF	CITATIONS
1	Ribbon boosts ribosomal protein gene expression to coordinate organ form and function. Journal of Cell Biology, 2022, 221, .	5.2	3
2	New regulators of <i> Drosophila < /i > eye development identified from temporal transcriptome changes. Genetics, 2021, 217, .</i>	2.9	3
3	Transcriptional reprogramming by oxidative stress occurs within a predefined chromatin accessibility landscape. Free Radical Biology and Medicine, 2021, 171, 319-331.	2.9	6
4	Creb <scp>A</scp> increases secretory capacity through direct transcriptional regulation of the secretory machinery, a subset of secretory cargo, and other key regulators. Traffic, 2020, 21, 560-577.	2.7	20
5	The Drosophila MLR COMPASS complex is essential for programming cis-regulatory information and maintaining epigenetic memory during development. Nucleic Acids Research, 2020, 48, 3476-3495.	14.5	8
6	A hypermorphic antioxidant response element is associated with increased MS4A6A expression and Alzheimer's disease. Redox Biology, 2018, 14, 686-693.	9.0	21
7	A Role for Monomethylation of Histone H3-K27 in Gene Activity in <i>Drosophila</i> . Genetics, 2018, 208, 1023-1036.	2.9	11
8	Identification of a functional antioxidant response element at the HIF1A locus. Redox Biology, 2018, 19, 401-411.	9.0	77
9	A distinct class of antioxidant response elements is consistently activated in tumors with NRF2 mutations. Redox Biology, 2018, 19, 235-249.	9.0	37
10	cis-regulatory architecture of a short-range EGFR organizing center in the Drosophila melanogaster leg. PLoS Genetics, 2018, 14, e1007568.	3.5	15
11	A Polymorphic Antioxidant Response Element Links NRF2/sMAF Binding to Enhanced MAPT Expression and Reduced Risk of Parkinsonian Disorders. Cell Reports, 2016, 15, 830-842.	6.4	40
12	Gene regulatory effects of disease-associated variation in the NRF2 network. Current Opinion in Toxicology, 2016, 1, 71-79.	5.0	23
13	Ribbon regulates morphogenesis of the Drosophila embryonic salivary gland through transcriptional activation and repression. Developmental Biology, 2016, 409, 234-250.	2.0	7
14	DNA-binding sequence specificity of DUX4. Skeletal Muscle, 2015, 6, 8.	4.2	30
15	Establishment of a Developmental Compartment Requires Interactions between Three Synergistic Cis-regulatory Modules. PLoS Genetics, 2015, 11, e1005376.	3 . 5	29
16	Beyond antioxidant genes in the ancient Nrf2 regulatory network. Free Radical Biology and Medicine, 2015, 88, 452-465.	2.9	74
17	Deconvolving the Recognition of DNA Shape from Sequence. Cell, 2015, 161, 307-318.	28.9	174
18	Transcription Factor Networks in Drosophila melanogaster. Cell Reports, 2014, 8, 2031-2043.	6.4	83

#	Article	IF	Citations
19	Evolution of H3K27me3-marked chromatin is linked to gene expression evolution and to patterns of gene duplication and diversification. Genome Research, 2014, 24, 1115-1124.	5 . 5	23
20	Diverse patterns of genomic targeting by transcriptional regulators in <i>Drosophila melanogaster</i> . Genome Research, 2014, 24, 1224-1235.	5 . 5	31
21	Comparative analysis of regulatory information and circuits across distant species. Nature, 2014, 512, 453-456.	27.8	184
22	Yorkie Promotes Transcription by Recruiting a Histone Methyltransferase Complex. Cell Reports, 2014, 8, 449-459.	6.4	66
23	Absence of a simple code: how transcription factors read the genome. Trends in Biochemical Sciences, 2014, 39, 381-399.	7.5	447
24	SELEX-seq: A Method for Characterizing the Complete Repertoire of Binding Site Preferences for Transcription Factor Complexes. Methods in Molecular Biology, 2014, 1196, 255-278.	0.9	68
25	Enhanced dissection of the regulatory genome. Nature Methods, 2013, 10, 710-712.	19.0	2
26	Genome-wide Association of Yorkie with Chromatin and Chromatin-Remodeling Complexes. Cell Reports, 2013, 3, 309-318.	6.4	126
27	Divergent Transcriptional Regulatory Logic at the Intersection of Tissue Growth and Developmental Patterning. PLoS Genetics, 2013, 9, e1003753.	3.5	41
28	A Survey of 6,300 Genomic Fragments for cis-Regulatory Activity in the Imaginal Discs of Drosophila melanogaster. Cell Reports, 2012, 2, 1014-1024.	6.4	115
29	ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 2012, 22, 1813-1831.	5.5	1,708
30	Control of mitochondrial structure and function by the Yorkie/YAP oncogenic pathway. Genes and Development, 2012, 26, 2027-2037.	5.9	84
31	Interpreting the regulatory genome: the genomics of transcription factor function in Drosophila melanogaster. Briefings in Functional Genomics, $2012,11,336-346.$	2.7	4
32	Disentangling the Many Layers of Eukaryotic Transcriptional Regulation. Annual Review of Genetics, 2012, 46, 43-68.	7.6	222
33	Cofactor Binding Evokes Latent Differences in DNA Binding Specificity between Hox Proteins. Cell, 2011, 147, 1270-1282.	28.9	454
34	Genome-Wide Tissue-Specific Occupancy of the Hox Protein Ultrabithorax and Hox Cofactor Homothorax in Drosophila. PLoS ONE, 2011, 6, e14686.	2.5	78
35	Transcription factor choice in the Hippo signaling pathway: <i>homothorax</i> and <i>yorkie</i> regulation of the microRNA <i>bantam</i> in the progenitor domain of the <i>Drosophila</i> eye imaginal disc. Genes and Development, 2009, 23, 2307-2319.	5.9	179