Renzo Vallauri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12018372/publications.pdf Version: 2024-02-01

PENZO VALLALIDI

#	Article	IF	CITATIONS
1	Parameterizing a polarizable intermolecular potential for water. Molecular Physics, 1995, 86, 149-158.	1.7	112
2	Liquid alkali metals at the melting point: Structural and dynamical properties. Physical Review B, 1993, 47, 3011-3020.	3.2	82
3	Fast sound in liquid water. Physical Review E, 1993, 47, 1677-1684.	2.1	77
4	Liquid–vapor and liquid–liquid phase equilibria of the Brodholt–Sampoli–Vallauri polarizable water model. Journal of Chemical Physics, 2005, 122, 081101.	3.0	62
5	Computer simulations of liquid HF by a newly developed polarizable potential model. Journal of Chemical Physics, 1997, 107, 10166-10176.	3.0	55
6	Viscosity of liquid water from computer simulations with a polarizable potential model. Physical Review E, 2000, 62, 2971-2973.	2.1	49
7	Computer simulation study of liquid HF with a new effective pair potential model. Molecular Physics, 1997, 92, 331-336.	1.7	38
8	Diffusion of water in confined geometry: The case of a multilamellar bilayer. Physical Review E, 2005, 72, 041201.	2.1	35
9	Parameterizing polarizable intermolecular potentials for water with the ice 1h phase. Molecular Physics, 1995, 85, 81-90.	1.7	34
10	Hydrogen bonded clusters in the liquid phase: I. Analysis of the velocity correlation function of water triplets. Journal of Physics Condensed Matter, 1998, 10, 9231-9240.	1.8	34
11	A molecular level explanation of the density maximum of liquid water from computer simulations with a polarizable potential model. Chemical Physics Letters, 2000, 318, 155-160.	2.6	32
12	Structural properties of liquid HF: a computer simulation investigation. Molecular Physics, 1998, 93, 15-24.	1.7	32
13	de Gennes slowing of density fluctuations in ordinary and supercooled liquids. Physical Review A, 1989, 40, 2796-2798.	2.5	31
14	Structural and thermodynamic properties of different phases of supercooled liquid water. Journal of Chemical Physics, 2008, 128, 244503.	3.0	31
15	Reverse Monte Carlo analysis of neutron diffraction results: Water around its critical point. Journal of Chemical Physics, 1996, 105, 2391-2398.	3.0	26
16	Molecular Dynamics Simulation of a GM3 Ganglioside Bilayer. Journal of Physical Chemistry B, 2004, 108, 20322-20330.	2.6	24
17	Evolution from ordinary to fast sound in water at room temperature. Chemical Physics Letters, 1993, 209, 408-416.	2.6	23
18	GM1 Ganglioside Embedded in a Hydrated DOPC Membrane: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2009, 113, 4876-4886.	2.6	21

Renzo Vallauri

#	Article	IF	CITATIONS
19	The use of a point polarizable dipole in intermolecular potentials for water. Molecular Physics, 1998, 94, 873-876.	1.7	21
20	Temperature dependence of thermodynamic properties of a polarizable potential model of water. Molecular Physics, 1999, 97, 1157-1163.	1.7	19
21	Thermodynamic and structural properties of liquid water around the temperature of maximum density in a wide range of pressures: A computer simulation study with a polarizable potential model. Journal of Chemical Physics, 2001, 115, 3750-3762.	3.0	19
22	The change of the structural and thermodynamic properties of water from ambient to supercritical conditions as seen by computer simulations. Journal of Physics Condensed Matter, 2000, 12, A115-A122.	1.8	17
23	Short-Range Structure of a GM3 Ganglioside Membrane:  Comparison between Experimental WAXS and Computer Simulation Results. Journal of Physical Chemistry B, 2007, 111, 10965-10969.	2.6	14
24	Comparison of polarizable and nonpolarizable models of hydrogen fluoride in liquid and supercritical states: A Monte Carlo simulation study. Journal of Chemical Physics, 2001, 115, 9883-9894.	3.0	13
25	Temperature of maximum density line of a polarizable water model. Physical Review E, 2003, 67, 011201.	2.1	12
26	Transport properties of liquid hydrogen fluoride. Journal of Chemical Physics, 2000, 112, 9025-9040.	3.0	11
27	Molecular dynamics simulation of GM1 gangliosides embedded in a phospholipid membrane. Journal of Molecular Liquids, 2006, 129, 86-91.	4.9	11
28	Structure of coexisting liquid phases of supercooled water: Analogy with ice polymorphs. Journal of Chemical Physics, 2007, 126, 241103.	3.0	10
29	Development of a new polarizable potential model of hydrogen fluoride and comparison with other effective models in liquid and supercritical states. Journal of Chemical Physics, 2006, 124, 184504.	3.0	9
30	Collective dynamics of supercooled water close to the liquid–liquid coexistence lines. Physical Chemistry Chemical Physics, 2011, 13, 19823.	2.8	6
31	Dynamical properties of supercooled water close to the liquid–liquid coexistence lines, and their relation to those at ambient conditions. Journal of Physics Condensed Matter, 2010, 22, 284105.	1.8	5
32	Time correlation functions of simple liquids: A new insight on the underlying dynamical processes. Journal of Chemical Physics, 2018, 148, 174501.	3.0	2