Tugrul Cetinkaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1201692/publications.pdf

Version: 2024-02-01

257450 395702 1,304 65 24 33 citations g-index h-index papers 65 65 65 1756 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reduction of graphene oxide using Salvia Officinalis plant extract and its utilization for Li O2 batteries. Diamond and Related Materials, 2022, 126, 109118.	3.9	6
2	Biologically synthesized TiO2 nanoparticles and their application as lithium-air battery cathodes. Ceramics International, 2021, 47, 3994-4005.	4.8	24
3	Graphene-based nanocomposite cathodes architecture with palladium and \hat{l}_{\pm} -MnO2 for high cycle life lithium-oxygen batteries. Journal of Alloys and Compounds, 2021, 854, 157293.	5.5	10
4	Urchin-like core-shell TiO2/α-MnO2 nanostructures as an active catalyst for rechargeable lithium-oxygen battery. Advanced Powder Technology, 2021, 32, 895-907.	4.1	5
5	Electrochemical investigation of PVDF: HFP gel polymer electrolytes for quasi-solid-state Li-O2 batteries: effect of lithium salt type and concentration. Electrochimica Acta, 2021, 371, 137824.	5.2	29
6	Enhancement of the electrochemical performance of free-standing graphene electrodes with manganese dioxide and ruthenium nanocatalysts for lithium-oxygen batteries. International Journal of Hydrogen Energy, 2021, 46, 17173-17186.	7.1	3
7	Prevention of side reactions with a unique carbon-free catalyst biosynthesized by a virus template for non-aqueous and quasi-solid-state Li–O2 batteries. Journal of Power Sources, 2021, 509, 230374.	7.8	11
8	The vertically aligned graphene/graphite/PPy composites electrode and its PPy thickness-dependent electrochemical performance. Electrochimica Acta, 2021, 399, 139426.	5.2	7
9	2Hâ€MoS ₂ as an Artificial Solid Electrolyte Interface in Allâ€Solidâ€State Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2020, 7, 2001020.	3.7	23
10	Sulfur doped Li $<$ sub $>$ 1.3 $<$ /sub $>$ Al $<$ sub $>$ 0.3 $<$ /sub $>$ Ti $<$ sub $>$ 1.7 $<$ /sub $>$ (PO $<$ sub $>$ 4 $<$ /sub $>$) $<$ sub $>$ 3 $<$ /sub $>$ solid electrolytes with enhanced ionic conductivity and a reduced activation energy barrier. Physical Chemistry Chemical Physics, 2020, 22, 17221-17228.	2.8	33
11	Electrical double layer supercapacitors based on graphene nanoplatelets electrodes in organic and aqueous electrolytes: Effect of binders and scalable performance. Journal of Power Sources, 2018, 408, 91-104.	7.8	27
12	Shoring Up the Lithium Ion Batteries with Multi-Component Silicon Yolk-Shell Anodes for Grid-Scale Storage Systems: Experimental and Computational Mechanical Studies. Journal of the Electrochemical Society, 2017, 164, A2238-A2250.	2.9	17
13	Freestanding graphene/MnO ₂ cathodes for Li-ion batteries. Beilstein Journal of Nanotechnology, 2017, 8, 1932-1938.	2.8	26
14	Electrochemical performance of Al–Ni/MWCNTs nanocomposite anode for Li-ion batteries: the effect of MWCNT amount. Journal of Applied Electrochemistry, 2016, 46, 735-743.	2.9	5
15	Improved Electrochemical Performance of Lithium Oxygen Batteries with N-methyl-2-pyrrolidone Based Composite Polymer Electrolytes. Journal of the Electrochemical Society, 2016, 163, A1326-A1335.	2.9	9
16	Closing to Scaling-Up High Reversible Si/rGO Nanocomposite Anodes for Lithium Ion Batteries. Electrochimica Acta, 2016, 216, 312-319.	5.2	26
17	Three-dimensional Sn rich Cu6Sn5 negative electrodes for Li ion batteries. International Journal of Hydrogen Energy, 2016, 41, 9819-9827.	7.1	25
18	The effect of sliding speed on the wear behavior of pulse electro Co-deposited Ni/MWCNT nanocomposite coatings. Tribology International, 2016, 98, 59-73.	5.9	52

#	Article	IF	Citations
19	Synthesis of flexible pure graphene papers and utilization as free standing cathodes for lithium-air batteries. International Journal of Hydrogen Energy, 2016, 41, 9796-9802.	7.1	20
20	Electrolytic coating of Sn nano-rods on nickel foam support for high performance lithium ion battery anodes. Surface and Coatings Technology, 2016, 288, 62-68.	4.8	23
21	High stable Li-air battery cells by using PEO and PVDF additives in the TEGDME/LiPF6 electrolytes. International Journal of Hydrogen Energy, 2016, 41, 6954-6964.	7.1	14
22	Stability effect of some organic and inorganic additions in the EMITFSI–LiTFSI nanocomposite electrolytes for lithium-air batteries. Microsystem Technologies, 2016, 22, 953-963.	2.0	7
23	High capacity Graphene/α-MnO2 nanocomposite cathodes for Li–O2 batteries. International Journal of Hydrogen Energy, 2016, 41, 9746-9754.	7.1	31
24	Free standing flexible graphene oxide + α-MnO2 composite cathodes for Li–Air batteries. Solid State Ionics, 2016, 286, 34-39.	2.7	39
25	Stability effect of polymer-based additives on EMITFSI-LiTFSI electrolyte in lithium-air battery. Solid State Ionics, 2016, 286, 51-56.	2.7	12
26	Graphene supported α-MnO2 nanocomposite cathodes for lithium ion batteries. International Journal of Hydrogen Energy, 2016, 41, 6945-6953.	7.1	30
27	Structural and sliding wear properties of Ag/Graphene/WC hybrid nanocomposites produced by electroless co-deposition. Journal of Alloys and Compounds, 2016, 654, 185-195.	5 . 5	48
28	Graphene Oxide/α-MnO2 Nanocomposite Electrodes Produced Using Planetary Ball Milling for Li-O2 Batteries. Materials Today: Proceedings, 2015, 2, 4223-4228.	1.8	2
29	Double Buffering Effect on the Electrochemical Behavior of Pulse Electro co-deposited Sn-Ni/MWCNT Nanocomposite Electrodes for Lithium-ion Batteries. Materials Today: Proceedings, 2015, 2, 4229-4238.	1.8	3
30	The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites. Applied Surface Science, 2015, 359, 340-348.	6.1	137
31	Active and inactive buffering effect on the electrochemical behavior of Sn–Ni/MWCNT composite anodes prepared by pulse electrodeposition for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 645, 235-242.	5.5	26
32	Cr- and V-Substituted LiMn2O4 Cathode Electrode Materials for High-Rate Battery Applications. , 2015, , 41-56.		2
33	Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition. Surface and Coatings Technology, 2015, 284, 344-352.	4.8	30
34	Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: Effects of duty cycle. Applied Surface Science, 2015, 334, 80-86.	6.1	12
35	Electrochemical performance of electroless nickel plated silicon electrodes for Li-ion batteries. Applied Surface Science, 2015, 334, 94-101.	6.1	13
36	High efficiency TiO ₂ /MWCNT based anode electrodes for Li-ion batteries. International Journal of Energy Research, 2015, 39, 172-180.	4.5	14

#	Article	IF	CITATIONS
37	Preparation and Characterization of Copper Powders with Sn Coating by the Electroless Plating. Acta Physica Polonica A, 2015, 127, 1106-1108.	0.5	3
38	Si/Mo/MWCNT Nanocomposites for Lithium Ion Battery Applications. Acta Physica Polonica A, 2015, 127, 1048-1051.	0.5	0
39	Evaluation of Li-Air Batteries With EC-DEC Based Nanocomposite Electrolytes. Acta Physica Polonica A, 2015, 127, 1023-1025.	0.5	0
40	Thin Film Nanostructured ATO and ATO Based Composite Anodes for Li-lon Batteries. Acta Physica Polonica A, 2014, 125, 296-298.	0.5	0
41	Nanocomposite ZnO:MWCNT Thin Films for Li-lon Batteries Prepared via Reactive Magnetron Sputtering. Acta Physica Polonica A, 2014, 125, 319-321.	0.5	2
42	Characteristics and Electrochemical Performance of TiO ₂ :MWCNT Nanocomposite Anodes for Li-Ion Batteries. Acta Physica Polonica A, 2014, 125, 322-324.	0.5	1
43	Cyclic Performance Study of Silicon/Carbon Nanotube Composite Anodes Using Electrochemical Impedance Spectroscopy. Acta Physica Polonica A, 2014, 125, 290-292.	0.5	3
44	Nanocomposite anodes for lithium-ion batteries based on Sno ₂ on multiwalled carbon nanotubes. International Journal of Energy Research, 2014, 38, 487-498.	4.5	36
45	Highly Reversible Silicon/Carbon Nanofiber/Carbon Nanotube Nanocomposite Anodes for Lithium Ion Batteries. ECS Transactions, 2014, 63, 23-29.	0.5	1
46	Developing lithium ion battery silicon/cobalt core-shell electrodes for enhanced electrochemical properties. International Journal of Hydrogen Energy, 2014, 39, 21405-21413.	7.1	20
47	Improvement of electrochemical and structural properties of LiMn 2 O 4 spinel based electrode materials for Li-ion batteries. International Journal of Hydrogen Energy, 2014, 39, 21447-21460.	7.1	30
48	A different method for producing a flexible LiMn2O4/MWCNT composite electrode for lithium ion batteries. Journal of Applied Electrochemistry, 2014, 44, 209-214.	2.9	20
49	Production of Sn/MWCNT nanocomposite anodes by pulse electrodeposition for Li-ion batteries. Applied Surface Science, 2014, 290, 6-12.	6.1	27
50	Improvement cycleability of core–shell silicon/copper composite electrodes for Li-ion batteries by using electroless deposition of copper on silicon powders. Powder Technology, 2014, 253, 63-69.	4.2	54
51	Preparation of Sn–Co alloy electrode for lithium ion batteries by pulse electrodeposition. International Journal of Hydrogen Energy, 2014, 39, 21414-21419.	7.1	26
52	The effect of MWCNT reinforcing on the electrochemical performance of LiMn2O4/MWCNT nanocomposite cathodes. International Journal of Energy Research, 2014, 38, 509-517.	4.5	15
53	Production of Sn–Cu/MWCNT composite electrodes for Li-ion batteries by using electroless tin coating. Thin Solid Films, 2014, 572, 216-223.	1.8	21
54	Electrochemical performance of MWCNT reinforced ZnO anodes for Li-ion batteries. Microelectronic Engineering, 2014, 118, 54-60.	2.4	28

#	Article	IF	CITATIONS
55	A parametric study on the rapid synthesis of one dimensional (1D) $\hat{l}\pm$ -MnO2 nanowires. Microelectronic Engineering, 2014, 126, 54-59.	2.4	25
56	Free-standing flexible graphene oxide paper electrode for rechargeable Li–O2 batteries. Journal of Power Sources, 2014, 267, 140-147.	7.8	59
57	High capacity TiO2 anode materials for Li-ion batteries. Energy Conversion and Management, 2013, 72, 111-116.	9.2	19
58	Synthesis of nanostructured TiO2/SiO2 as an effective photocatalyst for degradation of acid orange. Applied Surface Science, 2013, 279, 384-390.	6.1	56
59	Enhancing electrochemical performance of silicon anodes by dispersing MWCNTs using planetary ball milling. Microelectronic Engineering, 2013, 108, 169-176.	2.4	37
60	Electrochemical Characterization of the Powder Silicon Anodes Reinforced with Graphite Using Planetary Ball Milling. Acta Physica Polonica A, 2013, 123, 393-395.	0.5	6
61	Novel Titanium Dioxide Based Nanocomposite Anodes for Li-Ion Batteries. Acta Physica Polonica A, 2013, 123, 390-392.	0.5	1
62	Preparation and Electrochemical Performance of ZnO Films as Anode Materials for Li-Ion Batteries. Acta Physica Polonica A, 2013, 123, 355-357.	0.5	2
63	Investigation of Tin Oxide Based Nanocomposites for Li-Ion Batteries. Acta Physica Polonica A, 2013, 123, 358-360.	0.5	1
64	Nanostructured Silicon Thin Film Electrodes for Li-Ion Batteries. Acta Physica Polonica A, 2013, 123, 380-382.	0.5	6
65	Synthesis and Characterization of Antimony Doped Tin Oxide Nanocomposites for Li-lon Batteries. Acta Physica Polonica A, 2013, 123, 383-385.	0.5	4