
Vinh Son Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12016551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anthraceneâ€Bridged Sensitizers for Dyeâ€Sensitized Solar Cells with 37% Efficiency under Dim Light. Advanced Energy Materials, 2022, 12, .	19.5	21
2	Double Fence Porphyrins that are Compatible with Cobalt(II/III) Electrolyte for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 4886-4893.	13.8	35
3	Double Fence Porphyrins that are Compatible with Cobalt(II/III) Electrolyte for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. Angewandte Chemie, 2021, 133, 4936-4943.	2.0	5
4	<i>tert</i> -Butylpyridine Coordination with [Cu(dmp) ₂] ^{2+/+} Redox Couple and Its Connection to the Stability of the Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2020, 12, 5812-5819.	8.0	30
5	The photolysis of α-hydroperoxycarbonyls. Physical Chemistry Chemical Physics, 2018, 20, 6970-6979.	2.8	14
6	Theoretically derived mechanisms of HPALD photolysis in isoprene oxidation. Physical Chemistry Chemical Physics, 2017, 19, 9096-9106.	2.8	21
7	The reaction of methyl peroxy and hydroxyl radicals as a major source of atmospheric methanol. Nature Communications, 2016, 7, 13213.	12.8	65
8	Hydrogen Release from Ammonia Alane-Based Materials: Formation of Cyclotrialazane and Alazine. Journal of Physical Chemistry C, 2015, 119, 4524-4539.	3.1	3
9	Fast (<i>E</i>)–(<i>Z</i>) Isomerization Mechanisms of Substituted Allyloxy Radicals in Isoprene Oxidation. Journal of Physical Chemistry A, 2015, 119, 7270-7276.	2.5	9
10	Atmospheric Vinyl Alcohol to Acetaldehyde Tautomerization Revisited. Journal of Physical Chemistry Letters, 2015, 6, 4005-4011.	4.6	19
11	Hydroxyl Radical Recycling in Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism. Journal of Physical Chemistry A, 2014, 118, 8625-8643.	2.5	206
12	Theoretical Study of the Decomposition of Formamide in the Presence of Water Molecules. Journal of Physical Chemistry A, 2013, 117, 2543-2555.	2.5	41
13	Hydrogen release from systems containing phosphine, borane, alane and galane: A mechanistic study. Chemical Physics Letters, 2013, 584, 30-36.	2.6	4
14	Decomposition Pathways of the Neutral and Protonated Formamide in Some Lower-Lying Excited States. Journal of Physical Chemistry A, 2013, 117, 7904-7917.	2.5	15
15	Experimental and theoretical study of the reaction of the ethynyl radical with nitrous oxide, C2H + N2O. Physical Chemistry Chemical Physics, 2012, 14, 7456.	2.8	7
16	Formation and hydrogen release of hydrazine bisborane: transfer vs. attachment of a borane. Physical Chemistry Chemical Physics, 2011, 13, 6649.	2.8	18
17	Hydrazine bisalane is a potential compound for chemical hydrogen storage. A theoretical study. Dalton Transactions, 2011, 40, 8540.	3.3	3
18	Theoretical Study of Formamide Decomposition Pathways. Journal of Physical Chemistry A, 2011, 115, 841-851.	2.5	82

VINH SON NGUYEN

#	Article	IF	CITATIONS
19	Hydrogen release from ammonia borane and derivatives in the presence of a ruthenium complex incorporating cooperative PNP ligands. Chemical Physics Letters, 2011, 513, 195-200.	2.6	14
20	Theoretical study of the hydrogen release mechanism from a lithium derivative of ammonia borane, LiNH2BH3–NH3BH3. Chemical Physics Letters, 2011, 517, 22-28.	2.6	8
21	Potential hydrogen storage of lithium amidoboranes and derivatives. Chemical Physics Letters, 2010, 489, 148-153.	2.6	32
22	Catalytic generation of molecular hydrogen from hydrazine using lithium and beryllium hydrides. Chemical Physics Letters, 2010, 496, 25-31.	2.6	11
23	Calculations suggest a new preparation route to ammonium hydrotriborate salt for use in hydrogen storage. Chemical Physics Letters, 2010, 500, 237-241.	2.6	1
24	Calculations suggest facile hydrogen release from water using boranes and alanes as catalysts. Chemical Physics Letters, 2009, 472, 175-180.	2.6	18
25	Computational Study of Molecular Complexes Based on Ammonia Alane for Chemical Hydrogen Storage. Journal of Physical Chemistry C, 2009, 113, 18914-18926.	3.1	15
26	Production of hydrogen from reactions of methane with boranes. Physical Chemistry Chemical Physics, 2009, 11, 9703.	2.8	7
27	Theoretical Study of the Hydrogen Release from Ammonia Alane and the Catalytic Effect of Alane. Journal of Physical Chemistry C, 2008, 112, 5662-5671.	3.1	30
28	Reactions of Diborane with Ammonia and Ammonia Borane: Catalytic Effects for Multiple Pathways for Hydrogen Release. Journal of Physical Chemistry A, 2008, 112, 9946-9954.	2.5	37
29	Molecular Mechanism for H2Release from BH3NH3, Including the Catalytic Role of the Lewis Acid BH3. Journal of Physical Chemistry A, 2007, 111, 679-690.	2.5	161
30	Ammonia Triborane:  Theoretical Study of the Mechanism of Hydrogen Release. Journal of Physical Chemistry C, 2007, 111, 9603-9613.	3.1	28
31	Computational Study of the Release of H2from Ammonia Borane Dimer (BH3NH3)2and Its Ion Pair Isomers. Journal of Physical Chemistry A, 2007, 111, 8844-8856.	2.5	124
32	Decomposition Mechanism of the Anions Generated by Atmospheric Pressure Chemical Ionization of Nitroanilines. Journal of Physical Chemistry A, 2005, 109, 10954-10960.	2.5	4