Riccardo Ruffo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1201604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystalline-Amorphous Coreâ^'Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters, 2009, 9, 491-495.	9.1	1,110
2	Spinel LiMn ₂ O ₄ Nanorods as Lithium Ion Battery Cathodes. Nano Letters, 2008, 8, 3948-3952.	9.1	579
3	Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources, 2009, 189, 1132-1140.	7.8	559
4	Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes. Journal of Physical Chemistry C, 2009, 113, 11390-11398.	3.1	510
5	Ultrathin Spinel LiMn ₂ O ₄ Nanowires as High Power Cathode Materials for Li-Ion Batteries. Nano Letters, 2010, 10, 3852-3856.	9.1	452
6	Structural and electrochemical study of the reaction of lithium with silicon nanowires. Journal of Power Sources, 2009, 189, 34-39.	7.8	276
7	Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochemistry Communications, 2009, 11, 247-249.	4.7	229
8	Macroporous WO ₃ Thin Films Active in NH ₃ Sensing: Role of the Hosted Cr Isolated Centers and Pt Nanoclusters. Journal of the American Chemical Society, 2011, 133, 5296-5304.	13.7	197
9	Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4211-4223.	10.3	180
10	Shape-Controlled TiO ₂ Nanocrystals for Na-Ion Battery Electrodes: The Role of Different Exposed Crystal Facets on the Electrochemical Properties. Nano Letters, 2017, 17, 992-1000.	9.1	162
11	Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. Journal of Power Sources, 2013, 244, 758-763.	7.8	158
12	Assessment of Water-Soluble π-Extended Squaraines as One- and Two-Photon Singlet Oxygen Photosensitizers:  Design, Synthesis, and Characterization. Journal of the American Chemical Society, 2008, 130, 1894-1902.	13.7	152
13	Readiness Level of Sodiumâ€ l on Battery Technology: A Materials Review. Advanced Sustainable Systems, 2018, 2, 1700153.	5.3	135
14	Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries. Physical Chemistry Chemical Physics, 2012, 14, 5945.	2.8	116
15	Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn ₂ O ₄ . Nano Letters, 2009, 9, 4109-4114.	9.1	114
16	High Efficiency Up onverting Single Phase Elastomers for Photon Managing Applications. Advanced Energy Materials, 2013, 3, 680-686.	19.5	108
17	High Stokes shift perylene dyes for luminescent solar concentrators. Chemical Communications, 2013, 49, 1618.	4.1	97
18	One-Step Preparation of SnO ₂ and Pt-Doped SnO ₂ As Inverse Opal Thin Films for Gas Sensing. Chemistry of Materials, 2010, 22, 4083-4089.	6.7	96

#	Article	IF	CITATIONS
19	Co3O4 negative electrode material for rechargeable sodium ion batteries: An investigation of conversion reaction mechanism and morphology-performances correlations. Journal of Power Sources, 2016, 332, 42-50.	7.8	86
20	Alkaline glucose oxidation on nanostructured gold electrodes. Gold Bulletin, 2010, 43, 57-64.	2.7	84
21	The Na2FeP2O7-carbon nanotubes composite as high rate cathode material for sodium ion batteries. Journal of Power Sources, 2016, 302, 61-69.	7.8	78
22	Lithiation Mechanism in High-Entropy Oxides as Anode Materials for Li-Ion Batteries: An Operando XAS Study. ACS Applied Materials & Interfaces, 2020, 12, 50344-50354.	8.0	78
23	Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte. Solid State Ionics, 2011, 192, 289-292.	2.7	72
24	New perfluorinated ionomer with improved oxygen permeability for application in cathode polymeric electrolyte membrane fuel cell. Journal of Power Sources, 2018, 396, 95-101.	7.8	70
25	Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes. Faraday Discussions, 2014, 176, 69-81.	3.2	68
26	New Rollâ€toâ€Roll Processable PEDOTâ€Based Polymer with Colorless Bleached State for Flexible Electrochromic Devices. Advanced Functional Materials, 2020, 30, 1906254.	14.9	68
27	Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochimica Acta, 2013, 108, 575-582.	5.2	66
28	Facile synthesis and electrochemical performance of ordered LiNi0.5Mn1.5O4 nanorods as a high power positive electrode for rechargeable Li-ion batteries. Journal of Power Sources, 2011, 196, 10712-10716.	7.8	63
29	Stateâ€ofâ€theâ€Art Neutral Tint Multichromophoric Polymers for Highâ€Contrast Seeâ€Through Electrochromic Devices. Advanced Functional Materials, 2016, 26, 5240-5246.	14.9	63
30	Tetraaryl Zn ^{II} Porphyrinates Substituted at βâ€Pyrrolic Positions as Sensitizers in Dyeâ€Sensitized Solar Cells: A Comparison with <i>meso</i> â€Disubstituted Push–Pull Zn ^{II} Porphyrinates. Chemistry - A European Journal, 2013, 19, 10723-10740.	3.3	60
31	Fast and air stable near-infrared organic detector based on squaraine dyes. Organic Electronics, 2009, 10, 1314-1319.	2.6	58
32	Paving the Way toward Highly Efficient, High-Energy Potassium-Ion Batteries with Ionic Liquid Electrolytes. Chemistry of Materials, 2020, 32, 7653-7661.	6.7	58
33	Stokes shift/emission efficiency trade-off in donor–acceptor perylenemonoimides for luminescent solar concentrators. Journal of Materials Chemistry A, 2015, 3, 8045-8054.	10.3	57
34	Indolic Squaraines as Two-Photon Absorbing Dyes in the Visible Region: X-ray Structure, Electrochemical, and Nonlinear Optical Characterization. Chemistry of Materials, 2008, 20, 3242-3244.	6.7	56
35	Gray to Colorless Switching, Crosslinked Electrochromic Polymers with Outstanding Stability and Transmissivity From Naphthalenediimmideâ€Functionalized EDOT. Advanced Materials, 2012, 24, 2004-2008.	21.0	55
36	Dye-sensitized photocatalytic hydrogen production: distinct activity in a glucose derivative of a phenothiazine dye. Chemical Communications, 2016, 52, 6977-6980.	4.1	55

#	Article	IF	CITATIONS
37	Surface reactivity of nanostructured tin oxide and Pt-doped tin oxide as studied by EPR and XPS spectroscopies. Materials Science and Engineering C, 2001, 15, 167-169.	7.3	54
38	Neutron Diffraction and Electrochemical Study of FeNb ₁₁ O ₂₉ /Li ₁₁ FeNb ₁₁ O ₂₉ for Lithium Battery Anode Applications. Chemistry of Materials, 2014, 26, 2203-2209.	6.7	54
39	Panchromatic Crossâ€Substituted Squaraines for Dyeâ€Sensitized Solar Cell Applications. ChemSusChem, 2009, 2, 621-624.	6.8	51
40	Second harmonic generation in nonsymmetrical squaraines: tuning of the directional charge transfer character in highly delocalized dyes. Journal of Materials Chemistry, 2009, 19, 8190.	6.7	48
41	Tuning Thiopheneâ€Based Phenothiazines for Stable Photocatalytic Hydrogen Production. ChemSusChem, 2015, 8, 4216-4228.	6.8	48
42	Panchromatic squaraine compounds for broad band light harvesting electronic devices. Journal of Materials Chemistry, 2012, 22, 6704.	6.7	45
43	Nanostructured Pt-Doped Tin Oxide Films:Â Solâ^Gel Preparation, Spectroscopic and Electrical Characterization. Chemistry of Materials, 2001, 13, 4355-4361.	6.7	43
44	Thiocyanate-free cyclometalated ruthenium sensitizers for solar cells based on heteroaromatic-substituted 2-arylpyridines. Dalton Transactions, 2012, 41, 11731.	3.3	39
45	A new thiocyanate-free cyclometallated ruthenium complex for dye-sensitized solar cells: Beneficial effects of substitution on the cyclometallated ligand. Journal of Organometallic Chemistry, 2012, 714, 88-93.	1.8	38
46	Exploiting Selfâ€Healing in Lithium Batteries: Strategies for Nextâ€Generation Energy Storage Devices. Advanced Energy Materials, 2020, 10, 2002815.	19.5	38
47	Nanocrystalline SnO2-Based Thin Films Obtained by Solâ^'Gel Route:  A Morphological and Structural Investigation. Chemistry of Materials, 2003, 15, 2646-2650.	6.7	37
48	Bulk Heterojunction Solar Cells – Tuning of the HOMO and LUMO Energy Levels of Pyrrolic Squaraine Dyes. European Journal of Organic Chemistry, 2011, 2011, 5555-5563.	2.4	37
49	Asymmetric Tribranched Dyes: An Intramolecular Cosensitization Approach for Dye ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 6793-6801.	2.4	36
50	Ruthenium(Platinum)-Doped Tin Dioxide Inverted Opals for Gas Sensors:  Synthesis, Electron Paramagnetic Resonance, Mössbauer, and Electrical Investigation. Chemistry of Materials, 2005, 17, 6167-6171.	6.7	32
51	Chemically Sustainable Large Stokes Shift Derivatives for High-Performance Large-Area Transparent Luminescent Solar Concentrators. Joule, 2020, 4, 1988-2003.	24.0	32
52	Phosphate materials for cathodes in lithium ion secondary batteries. Ionics, 2005, 11, 213-219.	2.4	31
53	Quaterpyridine Ligands for Panchromatic Ru(II) Dye Sensitizers. Journal of Organic Chemistry, 2012, 77, 7945-7956.	3.2	30
54	Can electron paramagnetic resonance measurements predict the electrical sensitivity of SnO2-based film?. Applied Magnetic Resonance, 2002, 22, 89-100.	1.2	29

#	Article	IF	CITATIONS
55	Surface interaction of WO3 nanocrystals with NH3. Role of the exposed crystal surfaces and porous structure in enhancing the electrical response. RSC Advances, 2014, 4, 11012.	3.6	29
56	Pyridineâ^'EDOT Heteroaryleneâ^'Vinylene Donorâ^'Acceptor Polymers. Macromolecules, 2010, 43, 9698-9713.	4.8	28
57	Mechanistic study of the redox process of an in situ oxidatively polymerised poly(3,4-ethylene-dioxythiophene) film. Solar Energy Materials and Solar Cells, 2008, 92, 140-145.	6.2	27
58	Regioselective Synthesis of 1,2- vs 1,3-Squaraines. Organic Letters, 2011, 13, 3166-3169.	4.6	27
59	Postâ€Deposition Activation of Latent Hydrogenâ€Bonding: A New Paradigm for Enhancing the Performances of Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2014, 24, 7410-7419.	14.9	27
60	Physicochemical Investigation of the Panchromatic Effect on β-Substituted Zn ^{II} Porphyrinates for DSSCs: The Role of the π Bridge between a Dithienylethylene Unit and the Porphyrinic Ring. Journal of Physical Chemistry C, 2014, 118, 7307-7320.	3.1	27
61	Electrode kinetics in the "capacitive mixing―and "battery mixing―techniques for energy production from salinity differences. Electrochimica Acta, 2015, 176, 1065-1073.	5.2	27
62	Role of the carbon defects in the catalytic oxygen reduction by graphite nanoparticles: a spectromagnetic, electrochemical and computational integrated approach. Physical Chemistry Chemical Physics, 2019, 21, 6021-6032.	2.8	27
63	Enhanced Functional Properties of Ti 3 C 2 T x MXenes as Negative Electrodes in Sodiumâ€lon Batteries by Chemical Tuning. Small Methods, 2020, 4, 2000314.	8.6	27
64	Electrochemical characterization of highly abundant, low cost iron (III) oxide as anode material for sodium-ion rechargeable batteries. Electrochimica Acta, 2018, 269, 367-377.	5.2	26
65	Mechanism of sensing NO in argon by nanocrystalline SnO2: electron paramagnetic resonance, Mössbauer and electrical study. Sensors and Actuators B: Chemical, 2004, 100, 228-235.	7.8	25
66	A vinyleneâ€linked benzo[1,2â€ <i>b</i> :4,5â€ <i>b'</i>]dithiopheneâ€2,1,3â€benzothiadiazole lowâ€bandgap p Journal of Polymer Science Part A, 2012, 50, 2829-2840.	olymer. 2.3	25
67	Connecting molecule oxidation to single crystal structural and charge transport properties in rubrene derivatives. Journal of Materials Chemistry C, 2014, 2, 4147-4155.	5.5	25
68	Polymer-in-Ceramic Nanocomposite Solid Electrolyte for Lithium Metal Batteries Encompassing PEO-Grafted TiO ₂ Nanocrystals. Journal of the Electrochemical Society, 2020, 167, 070535.	2.9	25
69	Electrolytes for quasi solid-state dye-sensitized solar cells based on block copolymers. Journal of Polymer Science Part A, 2014, 52, 719-727.	2.3	24
70	Interaction of NO with Nanosized Ru-, Pd-, and Pt-Doped SnO2:Â Electron Paramagnetic Resonance, Mössbauer, and Electrical Investigation. Journal of Physical Chemistry B, 2005, 109, 7195-7202.	2.6	23
71	Electrical and electrochemical behaviour of several LiFe x Co1 â~' x PO4 solid solutions as cathode materials for lithium ion batteries. Ionics, 2007, 13, 287-291.	2.4	23
72	Co-precipitation in aqueous medium of La0.8Sr0.2Ga0.8Mg0.2O3â^î^via inorganic precursors. Journal of Power Sources, 2010, 195, 8116-8123.	7.8	23

#	Article	IF	CITATIONS
73	Enhanced photocatalytic hydrogen generation using carbazole-based sensitizers. Sustainable Energy and Fuels, 2017, 1, 694-698.	4.9	23
74	Crosslinked Electroactive Polymers Containing Naphthalene-Bisimide Redox Centers for Energy Storage. Journal of the Electrochemical Society, 2013, 160, A1094-A1098.	2.9	22
75	Electro-spun Co3O4 anode material for Na-ion rechargeable batteries. Solid State Ionics, 2017, 309, 41-47.	2.7	22
76	The Missing Piece: The Structure of the Ti ₃ C ₂ T _{<i>x</i>} MXene and Its Behavior as Negative Electrode in Sodium Ion Batteries. Nano Letters, 2021, 21, 8290-8297.	9.1	22
77	Characterization of (1â~'x) La0.83Sr0.17Ga0.83Mg0.17O2.83â^'xLa0.8Sr0.2MnO3 (0â‰쪄ô‰型) composite catho Journal of the European Ceramic Society, 2005, 25, 2587-2591.	des. 5.7	21
78	UV absorbing zwitterionic pyridinium-tetrazolate: exceptional transparency/optical nonlinearity trade-off. Chemical Communications, 2011, 47, 292-294.	4.1	20
79	A study on cobalt substitution in sodium manganese mixed-anion phosphates as positive electrode materials for Na-ion batteries. Journal of Power Sources, 2019, 444, 227274.	7.8	19
80	A physico-chemical investigation of highly concentrated potassium acetate solutions towards applications in electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 1139-1145.	2.8	19
81	Influence of doping elements on the formation rate of silicon nanowires by silver-assisted chemical etching. Surface and Coatings Technology, 2015, 280, 37-42.	4.8	18
82	Transition Metal Oxides on Reduced Graphene Oxide Nanocomposites: Evaluation of Physicochemical Properties. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	18
83	Ti3C2Tx MXene compounds for electrochemical energy storage. Current Opinion in Electrochemistry, 2021, 29, 100764.	4.8	17
84	A High Molecular Weight Donor for Electron Injection Interlayers on Metal Electrodes. ChemPhysChem, 2009, 10, 2947-2954.	2.1	16
85	Carbonate coprecipitation synthesis of Sr- and Mg-doped LaGaO3. Materials Letters, 2009, 63, 1892-1894.	2.6	16
86	Photophysical and Electrochemical Properties of Thiopheneâ€Based 2â€Arylpyridines. European Journal of Organic Chemistry, 2011, 2011, 5587-5598.	2.4	16
87	Dye-sensitized solar cells containing plasma jet deposited hierarchically nanostructured TiO2 thin photoanodes. Journal of Materials Chemistry A, 2013, 1, 11665.	10.3	16
88	Open circuit voltage tuning through molecular design in hydrazone end capped donors for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 2631.	10.3	16
89	Thermally Regenerable Redox Flow Battery. ChemSusChem, 2020, 13, 5460-5467.	6.8	16
90	Na 3 V 2 (PO 4) 3 ‣upported Electrospun Carbon Nanofiber Nonwoven Fabric as Self‣tanding Naâ€lon Cell Cathode. ChemElectroChem, 2020, 7, 1652-1659.	3.4	16

#	Article	IF	CITATIONS
91	Thermally Regenerable Redox Flow Battery for Exploiting Low-Temperature Heat Sources. Cell Reports Physical Science, 2020, 1, 100056.	5.6	16
92	Circular Economy and the Fate of Lithium Batteries: Second Life and Recycling. Advanced Energy and Sustainability Research, 2021, 2, 2100047.	5.8	16
93	Electrical behaviour of LSGM–LSM composite cathode materials. Solid State Ionics, 2006, 177, 1991-1996.	2.7	14
94	Molecular Level Factors Affecting the Efficiency of Organic Chromophores for p-Type Dye Sensitized Solar Cells. Energies, 2016, 9, 33.	3.1	14
95	Exomethylene-3,4-ethylenedioxythiophene (emEDOT): A New Versatile Building Block for Functionalized Electropolymerized Poly(3,4-ethylenedioxythiophenes) (PEDOTs). Organic Letters, 2013, 15, 3502-3505.	4.6	13
96	Red phosphorus decorated electrospun carbon anodes for high efficiency lithium ion batteries. Scientific Reports, 2020, 10, 13233.	3.3	13
97	Anharmonic motions <i>versus</i> dynamic disorder at the Mg ion from the charge densities in pyrope (Mg ₃ Al ₂ Si ₃ O ₁₂) crystals at 30â€K: six of one, half a dozen of the other. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2017. 73. 722-736.	1.1	12
98	Comparative life cycle assessment of Fe2O3-based fibers as anode materials for sodium-ion batteries. Environment, Development and Sustainability, 2021, 23, 6786-6799.	5.0	12
99	Algae-derived hard carbon anodes for Na-ion batteries. Journal of Applied Electrochemistry, 2021, 51, 1665-1673.	2.9	12
100	First demonstration of the use of open-shell derivatives as organic luminophores for transparent luminescent solar concentrators. Materials Advances, 2021, 2, 7369-7378.	5.4	12
101	Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 10569-10585.	10.3	12
102	The system Al2O3 and (Sr,Mg)-doped LaGaO3: phase composition and electrical properties. Solid State lonics, 2005, 176, 81-88.	2.7	11
103	Sol–gel derived mesoporous Pt and Cr-doped WO3 thin films: the role played by mesoporosity and metal doping in enhancing the gas sensing properties. Journal of Sol-Gel Science and Technology, 2011, 60, 378-387.	2.4	11
104	Optimizing operating conditions and electrochemical characterization of glucose–gluconate alkaline fuel cells. Journal of Power Sources, 2011, 196, 1273-1278.	7.8	11
105	A new double layer super-capacitor made by free-standing activated carbon membranes and highly concentrated potassium acetate solutions. Electrochimica Acta, 2020, 364, 137323.	5.2	11
106	Physicochemical properties of Pyr13TFSI-NaTFSI electrolyte for sodium batteries. Electrochimica Acta, 2022, 412, 140123.	5.2	11
107	Vinylene-linked pyridine-pyrrole donor–acceptor conjugated polymers. Synthetic Metals, 2011, 161, 763-769.	3.9	10
108	Effect of Hematite Doping with Aliovalent Impurities on the Electrochemical Performance of	4.1	10

#	Article	IF	CITATIONS
109	A new method and tool for detection and quantification of PM oxidative potential. Environmental Science and Pollution Research, 2015, 22, 12469-12478.	5.3	9
110	FeTiO 3 as Anode Material for Sodiumâ€ion Batteries: from Morphology Control to Decomposition. ChemElectroChem, 2020, 7, 1713-1722.	3.4	9
111	Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries. Ionics, 2021, 27, 1853-1860.	2.4	9
112	Analysis of the electrical behaviour of conductor/insulator composites using effective medium theories. Journal of the European Ceramic Society, 2002, 22, 1645-1652.	5.7	8
113	Electrochemical and Spectroelectrochemical Properties of a New Donor–Acceptor Polymer Containing 3,4-Dialkoxythiophene and 2,1,3-Benzothiadiazole Units. Polymers, 2013, 5, 1068-1080.	4.5	8
114	Treatment with ROS detoxifying gold quantum clusters alleviates the functional decline in a mouse model of Friedreich ataxia. Science Translational Medicine, 2021, 13, .	12.4	7
115	Synthesis and Characterization of Squaraineâ€Based Photocrosslinkable Resists for Bulk Heterojunction Solar Cells. European Journal of Organic Chemistry, 2016, 2016, 4032-4040.	2.4	6
116	A novel layered lithium niobium titanate as battery anode material: Crystal structure and charge-discharge properties. Solid State Ionics, 2016, 295, 72-77.	2.7	6
117	Synthesis and characterization of Fe2O3 /reduced graphene oxide nanocomposite as a high-performance anode material for sodium-ion batteries. Modelling, Measurement and Control B: Solid and Fluid Mechanics and Thermics, Mechanical Systems, 2018, 87, 129-134.	0.4	6
118	Composite solid-state electrolyte based on hybrid poly(ethylene glycol)-silica fillers enabling long-life lithium metal batteries. Electrochimica Acta, 2022, 411, 140060.	5.2	6
119	Investigation of redox activity in the napthalenediimide-poly(3,4-ethylenedioxythiophene) cross-linked polymers. Electrochimica Acta, 2014, 140, 152-159.	5.2	5
120	Diketopyrrolopyrrole latent pigment-based bilayer solar cells. Organic Photonics and Photovoltaics, 2018, 6, 8-16.	1.3	5
121	Preparation of Naphthalene Dianhydride Bithiophene Copolymers by Direct Arylation Polycondensation and the Latent Pigment Approach. ChemPlusChem, 2019, 84, 1346-1352.	2.8	5
122	Fluorine substituted non-symmetric phenazines: a new synthetic protocol from polyfluorinated azobenzenes. Arkivoc, 2020, 2019, 340-351.	0.5	5
123	Effect of Germanium Incorporation on the Electrochemical Performance of Electrospun Fe2O3 Nanofibers-Based Anodes in Sodium-Ion Batteries. Applied Sciences (Switzerland), 2021, 11, 1483.	2.5	5
124	Structural and electrical characterization of the NASICON-type Li2FeZr(PO4)3 and Li2FeTi(PO4)3 compounds. Ionics, 2001, 7, 105-108.	2.4	4
125	Role played by chain length and polarity of n-substitutents in electrochromic polymers from the tri-heterocyclic monomer pyrrole-thiophene-pyrrole. Solar Energy Materials and Solar Cells, 2012, 99, 101-108.	6.2	4
126	Epitaxial InN/InGaN quantum dots on Si: Clâ^anion selectivity and pseudocapacitor behavior. Applied Physics Express, 2016, 9, 081004.	2.4	3

#	Article	IF	CITATIONS
127	Algae Derived Electrodes for Rechargeable Na-Ion Batteries: Materials Characterization and Electrochemical Performances. ECS Transactions, 2017, 80, 349-355.	0.5	3
128	An efficient Buchwald–Hartwig amination protocol enables the synthesis of new branched and polymeric hole transport materials for perovskite solar cells. Energy Advances, 0, , .	3.3	3
129	Impedance investigation on porous Sr-doped LaMnO3 films onto Sr-Mg-doped LaGaO3 electrolyte. Ionics, 2008, 14, 107-111.	2.4	2
130	Modulation of charge transport properties in poly(3,4-ethylenedioxythiophene) nanocomposites for thermoelectric applications. Journal Physics D: Applied Physics, 2018, 51, 034002.	2.8	2
131	IS α-Al2O3/ La0.8Sr0.2Ga0.8Mg0.2O3–δ really a new ionic conductor composite?really a new ionic conductor composite?. Ionics, 2005, 11, 29-35.	2.4	1
132	An Integrated Theoretical/Experimental Study of Quinolinic–Isoquinolinic Derivatives Acting as Reversible Electrochromes. Materials, 2017, 10, 802.	2.9	1
133	Using the electron spin resonance to detect the functional centers in materials for sensor devices. Ionics, 2021, 27, 1839-1851.	2.4	1
134	From Small Metal Clusters to Molecular Nanoarchitectures with a Core–Shell Structure: The Synthesis, Redox Fingerprint, Theoretical Analysis, and Solid-State Structure of [Co ₃₈ As ₁₂ (CO) ₅₀] ^{4–} . Inorganic Chemistry, 0, , .	4.0	1
135	Sensing Mechanism of NO in Nanocrystalline Ru, Pt, Pd-Doped SnO2: Electron Paramagnetic Resonance, Mössbauer and Electrical Study. Materials Research Society Symposia Proceedings, 2004, 828, 185.	0.1	0
136	Electrical Characterization of LSGM Electrolytes Synthesized via Co-precipitation Route. ECS Transactions, 2009, 25, 1729-1736.	0.5	0
137	Preparation of Naphthalene Dianhydride Bithiophene Copolymers by Direct Arylation Polycondensation and the Latent Pigment Approach. ChemPlusChem, 2019, 84, 1176-1176.	2.8	0
138	The Importance of Interphases in Energy Storage Devices: Methods and Strategies to Investigate and Control Interfacial Processes. Physchem, 2021, 1, 26-44.	1.1	0
139	In memoriam—Claudio Maria Mari (1947–2020). Ionics, 2021, 27, 1837-1838.	2.4	0
140	Low dye content efficient dye-sensitized solar cells using carbon doped-titania paste from convenient green synthetic process. Inorganica Chimica Acta, 2021, 525, 120487.	2.4	0
141	Pt-SnO2 THIN FILMS BY SIMULTANEOUS GELATION OF TETRA(TERT-BUTOXY)TIN(IV) AND BIS(ACETYLACETONATO)PLATINUM(II) PRECURSORS: SPECTROSCOPIC AND ELECTRICAL CHARACTERIZATION. , 2000, , .		0