
Xin-Hua Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12015670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SPECIFICITY AND VERSATILITY IN TGF-Î ² SIGNALING THROUGH SMADS. Annual Review of Cell and Developmental Biology, 2005, 21, 659-693.	9.4	1,670
2	Transcriptional Activators of TGF-Î ² Responses: Smads. Cell, 1998, 95, 737-740.	28.9	1,034
3	Molecular Antagonism and Plasticity of Regulatory and Inflammatory T Cell Programs. Immunity, 2008, 29, 44-56.	14.3	1,023
4	Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature, 1996, 383, 168-172.	27.8	824
5	Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-Î ² -induced transcription. Nature, 1998, 394, 909-913.	27.8	758
6	Smurf2 Is a Ubiquitin E3 Ligase Mediating Proteasome-dependent Degradation of Smad2 in Transforming Growth Factor-l² Signaling. Journal of Biological Chemistry, 2000, 275, 36818-36822.	3.4	431
7	PPM1A Functions as a Smad Phosphatase to Terminate TGFÎ ² Signaling. Cell, 2006, 125, 915-928.	28.9	422
8	Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF-β. EMBO Journal, 2000, 19, 5178-5193.	7.8	372
9	Phospho-control of TGF-β superfamily signaling. Cell Research, 2009, 19, 8-20.	12.0	316
10	Microtubule Binding to Smads May Regulate TGFÎ ² Activity. Molecular Cell, 2000, 5, 27-34.	9.7	257
11	Smad7 Antagonizes Transforming Growth Factor β Signaling in the Nucleus by Interfering with Functional Smad-DNA Complex Formation. Molecular and Cellular Biology, 2007, 27, 4488-4499.	2.3	220
12	TGF-β receptor signaling. Biochimica Et Biophysica Acta: Reviews on Cancer, 1997, 1333, F105-F150.	7.4	216
13	Direct Interaction of c-Myc with Smad2 and Smad3 to Inhibit TGF-β-Mediated Induction of the CDK Inhibitor p15Ink4B. Molecular Cell, 2002, 9, 133-143.	9.7	203
14	Latent TGFβ1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO Journal, 2004, 23, 1770-1781.	7.8	192
15	A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF-β intracellular signaling specificity. EMBO Journal, 1997, 16, 3912-3923.	7.8	185
16	SUMO-1/Ubc9 Promotes Nuclear Accumulation and Metabolic Stability of Tumor Suppressor Smad4. Journal of Biological Chemistry, 2003, 278, 31043-31048.	3.4	160
17	Opposed Regulation of Corepressor CtBP by SUMOylation and PDZ Binding. Molecular Cell, 2003, 11, 1389-1396.	9.7	155
18	Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β–dependent cancer metastasis. Journal of Clinical Investigation, 2014, 124, 564-579.	8.2	155

#	Article	IF	CITATIONS
19	The Cardiac Determination Factor, Nkx2-5, Is Activated by Mutual Cofactors GATA-4 and Smad1/4 via a Novel Upstream Enhancer. Journal of Biological Chemistry, 2004, 279, 10659-10669.	3.4	150
20	COUP-TFII inhibits TGF-Î ² -induced growth barrier to promote prostate tumorigenesis. Nature, 2013, 493, 236-240.	27.8	146
21	Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling. Journal of Biological Chemistry, 2016, 291, 382-392.	3.4	144
22	Transforming Growth Factor-β (TGF-β)-induced Down-regulation of Cyclin A Expression Requires a Functional TGF-β Receptor Complex. Journal of Biological Chemistry, 1995, 270, 24237-24245.	3.4	140
23	CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt. Nature Communications, 2012, 3, 771.	12.8	128
24	Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nature Cell Biology, 2015, 17, 434-444.	10.3	128
25	c-Cbl-Mediated Neddylation Antagonizes Ubiquitination and Degradation of the TGF-β Type II Receptor. Molecular Cell, 2013, 49, 499-510.	9.7	126
26	Activation of Transforming Growth Factor-β Signaling by SUMO-1 Modification of Tumor Suppressor Smad4/DPC4. Journal of Biological Chemistry, 2003, 278, 18714-18719.	3.4	121
27	Transforming Growth Factor β Can Stimulate Smad1 Phosphorylation Independently of Bone Morphogenic Protein Receptors. Journal of Biological Chemistry, 2009, 284, 9755-9763.	3.4	115
28	Critical regulation of TGFβ signaling by Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9244-9249.	7.1	112
29	The Type II Transforming Growth Factor-β Receptor Autophosphorylates Not Only on Serine and Threonine but Also on Tyrosine Residues. Journal of Biological Chemistry, 1997, 272, 14850-14859.	3.4	107
30	Smad6 Recruits Transcription Corepressor CtBP To Repress Bone Morphogenetic Protein-Induced Transcription. Molecular and Cellular Biology, 2003, 23, 9081-9093.	2.3	100
31	Ligand-independent Activation of Transforming Growth Factor (TGF) β Signaling Pathways by Heteromeric Cytoplasmic Domains of TGF-β Receptors. Journal of Biological Chemistry, 1996, 271, 13123-13129.	3.4	94
32	Transforming Growth Factor-β-Smad Signaling Pathway Cooperates with NF-κB to Mediate NontypeableHaemophilus influenzae-induced MUC2 Mucin Transcription. Journal of Biological Chemistry, 2002, 277, 45547-45557.	3.4	90
33	Small C-terminal Domain Phosphatases Dephosphorylate the Regulatory Linker Regions of Smad2 and Smad3 to Enhance Transforming Growth Factor-β Signaling*. Journal of Biological Chemistry, 2006, 281, 38365-38375.	3.4	90
34	Protein Serine/Threonine Phosphatase PPM1A Dephosphorylates Smad1 in the Bone Morphogenetic Protein Signaling Pathway*. Journal of Biological Chemistry, 2006, 281, 36526-36532.	3.4	90
35	Smad3 Differentially Regulates the Induction of Regulatory and Inflammatory T Cell Differentiation. Journal of Biological Chemistry, 2009, 284, 35283-35286.	3.4	90
36	Nuclear Export of Smad2 and Smad3 by RanBP3 Facilitates Termination of TGF-β Signaling. Developmental Cell, 2009, 16, 345-357.	7.0	89

#	Article	IF	CITATIONS
37	TGF-β signaling in cell fate control and cancer. Current Opinion in Cell Biology, 2019, 61, 56-63.	5.4	89
38	TGF-β induces p65 acetylation to enhance bacteria-induced NF-κB activation. EMBO Journal, 2007, 26, 1150-1162.	7.8	86
39	Smad2 Positively Regulates the Generation of Th17 Cells*. Journal of Biological Chemistry, 2010, 285, 29039-29043.	3.4	86
40	Transforming Growth Factor-β-Smad Signaling Pathway Negatively Regulates Nontypeable Haemophilus influenzae-induced MUC5AC Mucin Transcription via Mitogen-activated Protein Kinase (MAPK) Phosphatase-1-dependent Inhibition of p38 MAPK. Journal of Biological Chemistry, 2003, 278, 27811-27819.	3.4	85
41	Loss of α-Tubulin Acetylation Is Associated with TGF-β-induced Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 2016, 291, 5396-5405.	3.4	85
42	Regulation of TGF-Î ² signalling by protein phosphatases. Biochemical Journal, 2010, 430, 191-198.	3.7	80
43	Ubiquitination and Proteolysis of Cancer-Derived Smad4 Mutants by SCF Skp2. Molecular and Cellular Biology, 2004, 24, 7524-7537.	2.3	79
44	Repression of Bone Morphogenetic Protein and Activin-inducible Transcription by Evi-1. Journal of Biological Chemistry, 2005, 280, 24227-24237.	3.4	79
45	Regulation of Smad4 Sumoylation and Transforming Growth Factor-Î ² Signaling by Protein Inhibitor of Activated STAT1. Journal of Biological Chemistry, 2004, 279, 22857-22865.	3.4	77
46	Posttranslational Regulation of Smads. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022087.	5.5	73
47	Cutting Edge: Smad2 and Smad4 Regulate TGF-β–Mediated <i>II9</i> Gene Expression via EZH2 Displacement. Journal of Immunology, 2013, 191, 4908-4912.	0.8	68
48	Essential Phosphatases and a Phospho-Degron Are Critical for Regulation of SRC-3/AIB1 Coactivator Function and Turnover. Molecular Cell, 2008, 31, 835-849.	9.7	62
49	HER2/EGFR–AKT Signaling Switches TGFβ from Inhibiting Cell Proliferation to Promoting Cell Migration in Breast Cancer. Cancer Research, 2018, 78, 6073-6085.	0.9	58
50	PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1. Science Advances, 2016, 2, e1501889.	10.3	55
51	Erbin Inhibits Transforming Growth Factor β Signaling through a Novel Smad-Interacting Domain. Molecular and Cellular Biology, 2007, 27, 6183-6194.	2.3	51
52	TGF-β signaling in cancer. Acta Biochimica Et Biophysica Sinica, 2018, 50, 941-949.	2.0	49
53	Smad7 enables STAT3 activation and promotes pluripotency independent of TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10113-10118.	7.1	48
54	Trim33 mediates the proinflammatory function of Th17 cells. Journal of Experimental Medicine, 2018, 215, 1853-1868.	8.5	48

#	Article	IF	CITATIONS
55	Regulation of Cardiac Specific nkx2.5 Gene Activity by Small Ubiquitin-like Modifier. Journal of Biological Chemistry, 2008, 283, 23235-23243.	3.4	46
56	To (TGF)β or not to (TGF)β: Fine-tuning of Smad signaling via post-translational modifications. Cellular Signalling, 2008, 20, 1579-1591.	3.6	45
57	dSmurf Selectively Degrades Decapentaplegic-activated MAD, and Its Overexpression Disrupts Imaginal Disc Development. Journal of Biological Chemistry, 2003, 278, 26307-26310.	3.4	44
58	ALK phosphorylates SMAD4 on tyrosine to disable TGF-β tumour suppressor functions. Nature Cell Biology, 2019, 21, 179-189.	10.3	41
59	Expression of PTEN, PPM1A and P-Smad2 in hepatocellular carcinomas and adjacent liver tissues. World Journal of Gastroenterology, 2007, 13, 4554.	3.3	39
60	Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation. Molecular and Cellular Biology, 2015, 35, 1700-1711.	2.3	37
61	BCL6 Represses Smad Signaling in Transforming Growth Factor-β Resistance. Cancer Research, 2008, 68, 783-789.	0.9	35
62	C-terminal Domain (CTD) Small Phosphatase-like 2 Modulates the Canonical Bone Morphogenetic Protein (BMP) Signaling and Mesenchymal Differentiation via Smad Dephosphorylation. Journal of Biological Chemistry, 2014, 289, 26441-26450.	3.4	32
63	Specific control of BMP signaling and mesenchymal differentiation by cytoplasmic phosphatase PPM1H. Cell Research, 2014, 24, 727-741.	12.0	29
64	Synergistic induction of nuclear factor-l̂ºB by transforming growth factor-l̂² and tumour necrosis factor-l̂± is mediated by protein kinase A-dependent RelA acetylation. Biochemical Journal, 2009, 417, 583-591.	3.7	27
65	Zinc Finger Protein 451 Is a Novel Smad Corepressor in Transforming Growth Factor-Î ² Signaling. Journal of Biological Chemistry, 2014, 289, 2072-2083.	3.4	27
66	The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation. Journal of Biological Chemistry, 2016, 291, 11518-11528.	3.4	25
67	SUMO Modification Reverses Inhibitory Effects of Smad Nuclear Interacting Protein-1 in TGF-Î ² Responses. Journal of Biological Chemistry, 2016, 291, 24418-24430.	3.4	25
68	PPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3. EMBO Reports, 2011, 12, 1175-1181.	4.5	24
69	Transforming Growth Factor-β-independent Regulation of Myogenesis by SnoN Sumoylation. Journal of Biological Chemistry, 2007, 282, 6517-6524.	3.4	23
70	Protein Phosphatase 4 Cooperates with Smads to Promote BMP Signaling in Dorsoventral Patterning of Zebrafish Embryos. Developmental Cell, 2012, 22, 1065-1078.	7.0	22
71	Tumor suppressor bromodomain-containing protein 7 cooperates with Smads to promote transforming growth factor-Î ² responses. Oncogene, 2017, 36, 362-372.	5.9	19
72	SCP4 Promotes Gluconeogenesis Through FoxO1/3a Dephosphorylation. Diabetes, 2018, 67, 46-57.	0.6	19

#	Article	IF	CITATIONS
73	Phosphatase UBLCP1 controls proteasome assembly. Open Biology, 2017, 7, 170042.	3.6	18
74	To Ub or not to Ub: a regulatory question in TGF-β signaling. Trends in Biochemical Sciences, 2022, 47, 1059-1072.	7.5	18
75	<scp>PTPN</scp> 3 acts as a tumor suppressor and boosts <scp>TGF</scp> â€Ŷ signaling independent of its phosphatase activity. EMBO Journal, 2019, 38, e99945.	7.8	15
76	A New Kid on the TGFβ Block: TAZ Controls Smad Nucleocytoplasmic Shuttling. Developmental Cell, 2008, 15, 8-10.	7.0	14
77	Regulation of p27 phosphorylation and G1 cell cycle progression by protein phosphatase PPM1G. American Journal of Cancer Research, 2016, 6, 2207-2220.	1.4	14
78	The protein phosphatase PPM1A dephosphorylates and activates YAP to govern mammalian intestinal and liver regeneration. PLoS Biology, 2021, 19, e3001122.	5.6	13
79	Coupling of Dephosphorylation and Nuclear Export of Smads in TGF-β Signaling. Methods in Molecular Biology, 2010, 647, 125-137.	0.9	13
80	Abrogation of Transforming Growth Factor-Î ² Signaling in Pancreatic Cancer. World Journal of Surgery, 2005, 29, 312-316.	1.6	11
81	WDR74 functions as a novel coactivator in TGF-Î ² signaling. Journal of Genetics and Genomics, 2018, 45, 639-650.	3.9	10
82	PRMT5 Enables Robust STAT3 Activation via Arginine Symmetric Dimethylation of SMAD7. Advanced Science, 2021, 8, 2003047.	11.2	10
83	C-terminal domain small phosphatase-like 2 promotes epithelial-to-mesenchymal transition via Snail dephosphorylation and stabilization. Open Biology, 2018, 8, 170274.	3.6	9
84	TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways. American Journal of Clinical and Experimental Urology, 2014, 2, 239-48.	0.4	9
85	AMBRA1 Promotes TGFÎ ² Signaling via Nonproteolytic Polyubiquitylation of Smad4. Cancer Research, 2021, 81, 5007-5020.	0.9	8
86	SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochemical Pharmacology, 2020, 180, 114155.	4.4	7
87	Resistance to transforming growth factor–beta occurs in the presence of normal Smad activation. Surgery, 2002, 132, 310-316.	1.9	6
88	HSPA13 facilitates NF-l̂ºB–mediated transcription and attenuates cell death responses in TNFα signaling. Science Advances, 2021, 7, eabh1756.	10.3	5
89	Mammalian Two-Hybrid Assays: Analyzing Protein-Protein Interactions in Transforming Growth Factor-β Signaling Pathway. , 2001, 177, 221-239.		4
90	Regulation of Smad Functions Through Ubiquitination and Sumoylation Pathways. , 2006, , 253-276.		3

Regulation of Smad Functions Through Ubiquitination and Sumoylation Pathways. , 2006, , 253-276. 90

#	Article	IF	CITATIONS
91	Design and application of a versatile expression vector for RNAi in mammalian cells. Journal of Rnai and Gene Silencing, 2005, 1, 38-43.	1.2	3