List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12012414/publications.pdf Version: 2024-02-01

LING-GANG WU

#	Article	IF	CITATIONS
1	Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biology, 2014, 16, 55-65.	10.3	1,022
2	Presynaptic inhibition of elicited neurotransmitter release. Trends in Neurosciences, 1997, 20, 204-212.	8.6	563
3	Calcium Channel Types with Distinct Presynaptic Localization Couple Differentially to Transmitter Release in Single Calyx-Type Synapses. Journal of Neuroscience, 1999, 19, 726-736.	3.6	393
4	Exocytosis and Endocytosis: Modes, Functions, and Coupling Mechanisms. Annual Review of Physiology, 2014, 76, 301-331.	13.1	334
5	Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron, 1994, 12, 1139-1148.	8.1	332
6	The Reduced Release Probability of Releasable Vesicles during Recovery from Short-Term Synaptic Depression. Neuron, 1999, 23, 821-832.	8.1	275
7	Fast Kinetics of Exocytosis Revealed by Simultaneous Measurements of Presynaptic Capacitance and Postsynaptic Currents at a Central Synapse. Neuron, 2001, 30, 171-182.	8.1	221
8	Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature, 2002, 417, 555-559.	27.8	220
9	Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature, 2006, 444, 102-105.	27.8	209
10	The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse. Neuron, 2005, 46, 633-645.	8.1	204
11	Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nature Neuroscience, 2009, 12, 1003-1010.	14.8	204
12	Conditional Expression of Parkinson's Disease-Related Mutant Â-Synuclein in the Midbrain Dopaminergic Neurons Causes Progressive Neurodegeneration and Degradation of Transcription Factor Nuclear Receptor Related 1. Journal of Neuroscience, 2012, 32, 9248-9264.	3.6	165
13	Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis. Cell, 2018, 173, 934-945.e12.	28.9	163
14	lmaging Synaptic Activity in Intact Brain and Slices with FM1-43 in C. elegans, Lamprey, and Rat. Neuron, 1999, 24, 809-817.	8.1	153
15	Isoflurane Inhibits Transmitter Release and the Presynaptic Action Potential. Anesthesiology, 2004, 100, 663-670.	2.5	136
16	Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nature Communications, 2016, 7, 12604.	12.8	127
17	Compound vesicle fusion increases quantal size and potentiates synaptic transmission. Nature, 2009, 459, 93-97.	27.8	119
18	Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4412-4417.	7.1	119

#	Article	IF	CITATIONS
19	Activity-Dependent Acceleration of Endocytosis at a Central Synapse. Journal of Neuroscience, 2005, 25, 11676-11683.	3.6	117
20	Hemi-fused structure mediates and controls fusion and fission in live cells. Nature, 2016, 534, 548-552.	27.8	117
21	Calcium-channel number critically influences synaptic strength and plasticity at the active zone. Nature Neuroscience, 2012, 15, 998-1006.	14.8	116
22	The debate on the kiss-and-run fusion at synapses. Trends in Neurosciences, 2007, 30, 447-455.	8.6	101
23	Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses. Neuron, 2016, 92, 1020-1035.	8.1	97
24	The Role of Calcium/Calmodulin-Activated Calcineurin in Rapid and Slow Endocytosis at Central Synapses. Journal of Neuroscience, 2010, 30, 11838-11847.	3.6	94
25	The Origin of Quantal Size Variation: Vesicular Glutamate Concentration Plays a Significant Role. Journal of Neuroscience, 2007, 27, 3046-3056.	3.6	91
26	Modes of Vesicle Retrieval at Ribbon Synapses, Calyx-Type Synapses, and Small Central Synapses. Journal of Neuroscience, 2007, 27, 11793-11802.	3.6	91
27	Rapid bulk endocytosis and its kinetics of fission pore closure at a central synapse. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10234-10239.	7.1	86
28	Role of Ca2+ channels in short-term synaptic plasticity. Current Opinion in Neurobiology, 2007, 17, 352-359.	4.2	77
29	Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nature Communications, 2014, 5, 3356.	12.8	77
30	GTP-independent rapid and slow endocytosis at a central synapse. Nature Neuroscience, 2008, 11, 45-53.	14.8	76
31	Presynaptic Calcium Dynamics and Transmitter Release Evoked by Single Action Potentials at Mammalian Central Synapses. Biophysical Journal, 1997, 72, 637-651.	0.5	73
32	SNARE Proteins Synaptobrevin, SNAP-25, and Syntaxin Are Involved in Rapid and Slow Endocytosis at Synapses. Cell Reports, 2013, 3, 1414-1421.	6.4	71
33	Protein Kinase C Increases the Apparent Affinity of the Release Machinery to Ca ²⁺ by Enhancing the Release Machinery Downstream of the Ca ²⁺ Sensor. Journal of Neuroscience, 2001, 21, 7928-7936.	3.6	68
34	α-Synuclein Mutation Inhibits Endocytosis at Mammalian Central Nerve Terminals. Journal of Neuroscience, 2016, 36, 4408-4414.	3.6	66
35	Calcineurin Is Universally Involved in Vesicle Endocytosis at Neuronal and Nonneuronal Secretory Cells. Cell Reports, 2014, 7, 982-988.	6.4	63
36	Kinetics of Synaptic Depression and Vesicle Recycling after Tetanic Stimulation of Frog Motor Nerve Terminals. Biophysical Journal, 1998, 74, 3003-3009.	0.5	62

#	Article	IF	CITATIONS
37	Kinetic regulation of vesicle endocytosis at synapses. Trends in Neurosciences, 2004, 27, 548-554.	8.6	56
38	The SNARE Proteins SNAP25 and Synaptobrevin Are Involved in Endocytosis at Hippocampal Synapses. Journal of Neuroscience, 2013, 33, 9169-9175.	3.6	53
39	New observations in neuroscience using superresolution microscopy. Journal of Neuroscience, 2018, 38, 9459-9467.	3.6	50
40	Voltage-Dependent Calcium Channels at the Plasma Membrane, but Not Vesicular Channels, Couple Exocytosis to Endocytosis. Cell Reports, 2012, 1, 632-638.	6.4	41
41	Vesicle Shrinking and Enlargement Play Opposing Roles in the Release of Exocytotic Contents. Cell Reports, 2020, 30, 421-431.e7.	6.4	41
42	Membrane Tension Inhibits Rapid and Slow Endocytosis in Secretory Cells. Biophysical Journal, 2017, 113, 2406-2414.	0.5	40
43	Capacitance measurements at the calyx of Held in the medial nucleus of the trapezoid body. Journal of Neuroscience Methods, 2004, 134, 121-131.	2.5	39
44	Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type <scp>IV</scp> . EMBO Reports, 2016, 17, 266-278.	4.5	39
45	The Yin and Yang of Calcium Effects on Synaptic Vesicle Endocytosis. Journal of Neuroscience, 2014, 34, 2652-2659.	3.6	38
46	Rapid Endocytosis Does Not Recycle Vesicles within the Readily Releasable Pool. Journal of Neuroscience, 2009, 29, 11038-11042.	3.6	36
47	Brain-Derived Neurotrophic Factor Inhibits Calcium Channel Activation, Exocytosis, and Endocytosis at a Central Nerve Terminal. Journal of Neuroscience, 2015, 35, 4676-4682.	3.6	28
48	The calyx of Held in the auditory system: Structure, function, and development. Hearing Research, 2016, 338, 22-31.	2.0	27
49	Post-tetanic potentiation is caused by two signalling mechanisms affecting quantal size and quantal content. Journal of Physiology, 2010, 588, 4987-4994.	2.9	25
50	Preformed Ω-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells. Neuron, 2021, 109, 3119-3134.e5.	8.1	24
51	Multiple Roles of Actin in Exo- and Endocytosis. Frontiers in Synaptic Neuroscience, 2022, 14, 841704.	2.5	24
52	A Membrane Pool Retrieved via Endocytosis Overshoot at Nerve Terminals: A Study of Its Retrieval Mechanism and Role. Journal of Neuroscience, 2012, 32, 3398-3404.	3.6	21
53	Most Vesicles in a Central Nerve Terminal Participate in Recycling. Journal of Neuroscience, 2013, 33, 8820-8826.	3.6	21
54	Presynaptic Kv3 channels are required for fast and slow endocytosis of synaptic vesicles. Neuron, 2021, 109, 938-946.e5.	8.1	16

#	Article	IF	CITATIONS
55	Protein Kinase C and Calmodulin Serve As Calcium Sensors for Calcium-Stimulated Endocytosis at Synapses. Journal of Neuroscience, 2019, 39, 9478-9490.	3.6	15
56	Suppression of agrinâ€22 production and synaptic dysfunction in Cln1 â^'/â^' mice. Annals of Clinical and Translational Neurology, 2015, 2, 1085-1104.	3.7	13
57	Calcineurin upregulates local Ca ²⁺ signaling through ryanodine receptor-1 in airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L781-L790.	2.9	10
58	Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons. Journal of Visualized Experiments, 2017, , .	0.3	9
59	Clathrin-mediated endocytosis cooperates with bulk endocytosis to generate vesicles. IScience, 2022, 25, 103809.	4.1	7
60	Sequential compound fusion and kiss-and-run mediate exo- and endocytosis in excitable cells. Science Advances, 2022, 8, .	10.3	5
61	Molecular mechanics underlying flat-to-round membrane budding in live secretory cells. Nature Communications, 2022, 13, .	12.8	5
62	Methods for Patch Clamp Capacitance Recordings from the Calyx. Journal of Visualized Experiments, 2007, , 244.	0.3	4
63	Location Matters: Synaptotagmin Helps Place Vesicles Near Calcium Channels. Neuron, 2009, 63, 419-421.	8.1	4
64	Cysteine String Protein Î \pm : A New Role in Vesicle Recycling. Neuron, 2012, 74, 6-8.	8.1	3
65	Dynamin 1 controls vesicle size and endocytosis at hippocampal synapses. Cell Calcium, 2022, 103, 102564.	2.4	3
66	Real-time visualization of exo- and endocytosis membrane dynamics with confocal and super-resolution microscopy. STAR Protocols, 2022, 3, 101404.	1.2	2
67	Neuromuscular function. , 0, , 261-276.		1
68	Vesicle Structural Changes Control Content Release of Transmitters and Hormones. Microscopy and Microanalysis, 2019, 25, 1172-1173.	0.4	0
69	Synaptic Vesicle Cycle at Nerve Terminals. , 2007, , 27-40.		0
70	Phospholipase A2-based probes to study vesicle trafficking. Cell Reports Methods, 2022, 2, 100206.	2.9	0
71	Light and electron microscopic imaging of synaptic vesicle endocytosis at mouse hippocampal cultures. STAR Protocols, 2022, 3, 101495.	1.2	0