Jason W Reed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1201238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements. Plant Physiology, 2021, 185, 256-273.	2.3	35
2	Genetic dissection of the auxin response network. Nature Plants, 2020, 6, 1082-1090.	4.7	23
3	miR167 limits anther growth to potentiate anther dehiscence. Development (Cambridge), 2019, 146, .	1.2	25
4	High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature, 2019, 565, 485-489.	13.7	213
5	Three Auxin Response Factors Promote Hypocotyl Elongation. Plant Physiology, 2018, 178, 864-875.	2.3	79
6	Developmental Defects Mediated by the P1/HC-Pro Potyviral Silencing Suppressor Are Not Due to Misregulation of <i>AUXIN RESPONSE FACTOR 8</i> . Plant Physiology, 2016, 172, 1853-1861.	2.3	3
7	Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. Journal of Experimental Botany, 2014, 65, 2507-2520.	2.4	223
8	ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 3569-3588.	3.1	241
9	A Regulatory Network for Coordinated Flower Maturation. PLoS Genetics, 2012, 8, e1002506.	1.5	204
10	In the absence of BYPASS1-related gene function, the <i>bps</i> signal disrupts embryogenesis by an auxin-independent mechanism. Development (Cambridge), 2012, 139, 805-815.	1.2	10
11	<i>Arabidopsis SMALL AUXIN UP RNA63</i> promotes hypocotyl and stamen filament elongation. Plant Journal, 2012, 71, 684-697.	2.8	219
12	A gain-of-function mutation in <i>IAA18</i> alters <i>Arabidopsis</i> embryonic apical patterning. Development (Cambridge), 2009, 136, 1509-1517.	1.2	74
13	Cell signaling and gene regulation. Current Opinion in Plant Biology, 2008, 11, 471-473.	3.5	3
14	Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development (Cambridge), 2006, 133, 4211-4218.	1.2	642
15	NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant Journal, 2005, 43, 118-130.	2.8	415
16	Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO Journal, 2005, 24, 1874-1885.	3.5	349
17	AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2regulate senescence and floral organ abscission in Arabidopsis thaliana. Development (Cambridge), 2005, 132, 4563-4574.	1.2	531
18	Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development (Cambridge), 2005, 132, 4107-4118.	1.2	608

JASON W REED

#	Article	IF	CITATIONS
19	Contrasting Modes of Diversification in the Aux/IAA and ARF Gene Families. Plant Physiology, 2004, 135, 1738-1752.	2.3	268
20	Regulation of Arabidopsis SHY2/IAA3 protein turnover. Plant Journal, 2003, 36, 643-651.	2.8	100
21	A Mutation in the Arabidopsis KT2/KUP2 Potassium Transporter Gene Affects Shoot Cell Expansion. Plant Cell, 2002, 14, 119-131.	3.1	202
22	Arabidopsis SHY2/IAA3 Inhibits Auxin-Regulated Gene Expression. Plant Cell, 2002, 14, 301-319.	3.1	262
23	Roles and activities of Aux/IAA proteins in Arabidopsis. Trends in Plant Science, 2001, 6, 420-425.	4.3	401
24	Molecular Links Between Light and Auxin Signaling Pathways. Journal of Plant Growth Regulation, 2001, 20, 274-280.	2.8	40
25	AXR2 Encodes a Member of the Aux/IAA Protein Family. Plant Physiology, 2000, 123, 563-574.	2.3	432
26	Independent Action of ELF3 and phyB to Control Hypocotyl Elongation and Flowering Time. Plant Physiology, 2000, 122, 1149-1160.	2.3	110
27	Phytochromes are Pr-ipatetic kinases. Current Opinion in Plant Biology, 1999, 2, 393-397.	3.5	27
28	Phytochrome autophosphorylation – no longer a red/far-red herring?. Trends in Plant Science, 1998, 3, 43-44.	4.3	8
29	Suppressors of an Arabidopsis thaliana phyB Mutation Identify Genes That Control Light Signaling and Hypocotyl Elongation. Genetics, 1998, 148, 1295-1310.	1.2	109
30	Mutational analyses of light-controlled seedling development in Arabidopsis. Seminars in Cell Biology, 1994, 5, 327-334.	3.5	29
31	Mutations in the Gene for the Red/Far-Red Light Receptor Phytochrome B Alter Cell Elongation and Physiological Responses throughout Arabidopsis Development. Plant Cell, 1993, 5, 147.	3.1	192
32	SEARCHING FOR PHYTOCHROME MUTANTS. Photochemistry and Photobiology, 1992, 56, 833-838.	1.3	18
33	<i>Rhizobium meliloti</i> exopolysaccharides: genetic analyses and symbiotic importance. Biochemical Society Transactions, 1991, 19, 636-644.	1.6	17
34	Genetic analyses of Rhizobium meliloti exopolysaccharides. International Journal of Biological Macromolecules, 1990, 12, 67-70.	3.6	21
35	Rhizobium meliloti mutants that fail to succinylate their Calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell, 1987, 51, 579-587.	13.5	243
36	Effect of the direction of DNA replication on mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in adapted cells of Escherichia coli. Molecular Genetics and Genomics, 1987, 208, 446-449.	2.4	29

#	Article	IF	CITATIONS
37	Symbiotic Mutants of Rhizobium Meliloti Which Produce Non-Succinylated Exopolysaccharide. Current Plant Science and Biotechnology in Agriculture, 1987, , 165-166.	0.0	1