Tingting Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12007440/publications.pdf Version: 2024-02-01

TINCTING CAO

#	Article	IF	CITATIONS
1	3Dâ€Printed, Allâ€inâ€One Evaporator for Highâ€Efficiency Solar Steam Generation under 1 Sun Illumination. Advanced Materials, 2017, 29, 1700981.	21.0	511
2	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-147.	14.6	364
3	Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 2017, 41, 201-209.	16.0	316
4	3Dâ€Printed Allâ€Fiber Liâ€lon Battery toward Wearable Energy Storage. Advanced Functional Materials, 2017, 27, 1703140.	14.9	270
5	Three-Dimensional Printed Thermal Regulation Textiles. ACS Nano, 2017, 11, 11513-11520.	14.6	261
6	Extrusionâ€Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes. Advanced Materials, 2018, 30, e1705651.	21.0	241
7	Single Atom Array Mimic on Ultrathin MOF Nanosheets Boosts the Safety and Life of Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e1906722.	21.0	205
8	Enabling High-Areal-Capacity Lithium–Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. ACS Nano, 2017, 11, 4801-4807.	14.6	151
9	3D Printing of Tunable Energy Storage Devices with Both High Areal and Volumetric Energy Densities. Advanced Energy Materials, 2019, 9, 1802578.	19.5	132
10	A Freestanding Flexible Singleâ€Atom Cobaltâ€Based Multifunctional Interlayer toward Reversible and Durable Lithium‧ulfur Batteries. Small Methods, 2020, 4, 1900701.	8.6	123
11	Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement. Small Methods, 2019, 3, 1800176.	8.6	97
12	3D printed separator for the thermal management of high-performance Li metal anodes. Energy Storage Materials, 2018, 12, 197-203.	18.0	95
13	Two Birds with One Stone: Interfacial Engineering of Multifunctional Janus Separator for Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2107638.	21.0	91
14	Disability adjusted life year (DALY): A useful tool for quantitative assessment of environmental pollution. Science of the Total Environment, 2015, 511, 268-287.	8.0	81
15	Breathâ€Figure Selfâ€Assembled Low ost Janus Fabrics for Highly Efficient and Stable Solar Desalination. Advanced Functional Materials, 2022, 32, .	14.9	80
16	In Situ "Chainmail Catalyst―Assembly in Low‶ortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1801289.	19.5	79
17	Enhanced Cathode and Anode Compatibility for Boosting Both Energy and Power Densities of Na/K-Ion Hybrid Capacitors. Matter, 2019, 1, 893-910.	10.0	65
18	Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. ACS Applied Materials & Interfaces, 2017, 9, 28922-28929.	8.0	53

TINGTING GAO

#	Article	IF	CITATIONS
19	Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. ACS Nano, 2018, 12, 5266-5273.	14.6	51
20	Synthesis of Hierarchically Porous Sandwich‣ike Carbon Materials for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2016, 22, 16863-16871.	3.3	38
21	Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. Journal of Energy Chemistry, 2022, 71, 192-200.	12.9	37
22	β-Cyclodextrin-based hollow nanoparticles with excellent adsorption performance towards organic and inorganic pollutants. Nanoscale, 2019, 11, 18653-18661.	5.6	35
23	In Situ, Fast, Highâ€Temperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix. Advanced Energy Materials, 2017, 7, 1601783.	19.5	27
24	All-in-One Compact Architecture toward Wearable All-Solid-State, High-Volumetric-Energy-Density Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 23834-23841.	8.0	25
25	Carbonized MOF-Coated Zero-Valent Cu Driving an Efficient Dual-Reaction-Center Fenton-like Water Treatment Process through Utilizing Pollutants and Natural Dissolved Oxygen. ACS ES&T Water, 2022, 2, 174-183.	4.6	25
26	One-pot fabrication of antibacterial β-cyclodextrin-based nanoparticles and their superfast, broad-spectrum adsorption towards pollutants. Journal of Colloid and Interface Science, 2020, 576, 302-312.	9.4	22
27	H2O2 inducing dissolved oxygen activation and electron donation of pollutants over Fe-ZnS quantum dots through surface electron-poor/rich microregion construction for water treatment. Journal of Hazardous Materials, 2021, 420, 126579.	12.4	22
28	Rapid, Selective Adsorption of Methylene Blue from Aqueous Solution by Durable Nanofibrous Membranes. Journal of Chemical & Engineering Data, 2020, 65, 3998-4008.	1.9	17
29	Vanadium tetrasulfide cross-linking graphene-like carbon driving a sustainable electron supply chain from pollutants through the activation of dissolved oxygen and hydrogen peroxide. Environmental Science: Nano, 2021, 8, 86-96.	4.3	15
30	Water-Insoluble Cyclodextrin-based nanocubes for highly efficient adsorption toward diverse organic and inorganic pollutants. Separation and Purification Technology, 2022, 291, 120970.	7.9	12
31	The interaction of surface electron distribution-polarized Fe/polyimide hybrid nanosheets with organic pollutants driving a sustainable Fenton-like process. Materials Advances, 2020, 1, 1083-1091.	5.4	9