
Yixing Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12006677/publications.pdf Version: 2024-02-01

YIYING YANG

#	Article	IF	CITATIONS
1	High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics, 2015, 9, 259-266.	31.4	886
2	Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nature Communications, 2018, 9, 2608.	12.8	268
3	Extended Conjugation Platinum(II) Porphyrins for use in Near-Infrared Emitting Organic Light Emitting Diodes. Chemistry of Materials, 2011, 23, 5305-5312.	6.7	226
4	On the degradation mechanisms of quantum-dot light-emitting diodes. Nature Communications, 2019, 10, 765.	12.8	167
5	Highâ€Efficient Deepâ€Blue Lightâ€Emitting Diodes by Using High Quality Zn _{<i>x</i>} Cd _{1â€<i>x</i>} S/ZnS Core/Shell Quantum Dots. Advanced Functional Materials, 2014, 24, 2367-2373.	14.9	151
6	Efficient Near-Infrared Polymer and Organic Light-Emitting Diodes Based on Electrophosphorescence from (Tetraphenyltetranaphtho[2,3]porphyrin)platinum(II). ACS Applied Materials & Interfaces, 2009, 1, 274-278.	8.0	129
7	High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nature Communications, 2020, 11, 1646.	12.8	129
8	Enhancing the Efficiency of Solution-Processed Polymer:Colloidal Nanocrystal Hybrid Photovoltaic Cells Using Ethanedithiol Treatment. ACS Nano, 2013, 7, 4846-4854.	14.6	108
9	High efficiency solution-processed thin-film Cu(In,Ga)(Se,S) ₂ solar cells. Energy and Environmental Science, 2016, 9, 3674-3681.	30.8	105
10	High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. Journal of the Society for Information Display, 2015, 23, 523-528.	2.1	103
11	Highly Efficient Blue–Green Quantum Dot Light-Emitting Diodes Using Stable Low-Cadmium Quaternary-Alloy ZnCdSSe/ZnS Core/Shell Nanocrystals. ACS Applied Materials & Interfaces, 2013, 5, 4260-4265.	8.0	86
12	Efficient and Bright Colloidal Quantum Dot Light-Emitting Diodes via Controlling the Shell Thickness of Quantum Dots. ACS Applied Materials & Interfaces, 2013, 5, 12011-12016.	8.0	78
13	Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nature Communications, 2021, 12, 4603.	12.8	64
14	Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers. Journal of Applied Physics, 2009, 106, .	2.5	62
15	Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers. Applied Physics Letters, 2008, 93, 163305.	3.3	59
16	Ultraviolet-violet electroluminescence from highly fluorescent purines. Journal of Materials Chemistry C, 2013, 1, 2867.	5.5	56
17	Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability. Nanoscale, 2012, 4, 3507.	5.6	53
18	Blue-Violet Electroluminescence from a Highly Fluorescent Purine. Chemistry of Materials, 2010, 22, 3580-3582.	6.7	50

YIXING YANG

#	Article	IF	CITATIONS
19	Origin of Subthreshold Turn-On in Quantum-Dot Light-Emitting Diodes. ACS Nano, 2019, 13, 8229-8236.	14.6	46
20	Enhanced Performance of Inverted Polymer Solar Cells by Combining ZnO Nanoparticles and Poly[(9,9-bis(3′-(<i>N</i> , <i>N</i> -dimethylamino)propyl)-2,7-fluorene)- <i>alt</i> -2,7-(9,9-dioctyfluorene)] as Electron Transport Layer. ACS Applied Materials & Interfaces, 2016, 8, 3301-3307.	8.0	43
21	Solution-processed high-efficiency cadmium-free Cu-Zn-In-S-based quantum-dot light-emitting diodes with low turn-on voltage. Organic Electronics, 2016, 36, 97-102.	2.6	40
22	Improving Charge Injection via a Blade-Coating Molybdenum Oxide Layer: Toward High-Performance Large-Area Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 8258-8264.	8.0	39
23	Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. Journal of Physical Chemistry Letters, 2020, 11, 5863-5870.	4.6	34
24	Multiple electron transporting layers and their excellent properties based on organic solar cell. Scientific Reports, 2017, 7, 9571.	3.3	20
25	6â€2: <i>Invited Paper</i> : Key Challenges towards the Commercialization of Quantumâ€Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2017, 48, 55-57.	0.3	15
26	Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor. Nanotechnology, 2013, 24, 475603.	2.6	14
27	Highly Stable SnO ₂ -Based Quantum-Dot Light-Emitting Diodes with the Conventional Device Structure. ACS Nano, 2022, 16, 9631-9639.	14.6	14
28	Conjugated polymers for pure UV light emission: Poly(<i>meta</i> â€phenylenes). Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 557-565.	2.1	13
29	On the accurate characterization of quantum-dot light-emitting diodes for display applications. Npj Flexible Electronics, 2022, 6, .	10.7	8
30	48-1: <i>Invited Paper</i> : High Efficiency and Ultra-Wide Color Gamut Quantum Dot LEDs for Next Generation Displays. Digest of Technical Papers SID International Symposium, 2016, 47, 644-647.	0.3	5
31	72â€1: <i>Invited Paper:</i> Realizing Long Lifetime Blue Quantum Dots Light Emitting Diodes (QLEDs) through Quantum Dot Structure Tailoring. Digest of Technical Papers SID International Symposium, 2020, 51, 1071-1074.	0.3	5
32	Efficient infrared photodetector based on three-dimensional self-assembled PbSe superlattices. Journal of Materials Chemistry C, 2014, 2, 6738-6742.	5.5	3
33	The Dawn of QLED for the FPD Industry. Information Display, 2018, 34, 14-17.	0.2	3
34	Electrically Pumped QD Light Emission from LEDs to Lasers. Information Display, 2021, 37, 6-17.	0.2	2
35	Near Infrared Fluorescent and Phosphorescent Organic Light-Emitting Devices. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	0
36	44.4: <i>Invited Paper:</i> Study on the Degradation Mechanisms of Quantumâ€Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 491-491.	0.3	0

#	Article	IF	CITATIONS
37	30.1: <i>Invited Paper:</i> Strategies towards Enhancing Device Lifetime of Quantumâ€Dot Lightâ€Emitting Diodes (QLEDs). Digest of Technical Papers SID International Symposium, 2021, 52, 188-188.	0.3	Ο