
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12001346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonviral delivery of self-amplifying RNA vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14604-14609.	7.1	498
2	Advances in vaccine adjuvants. Nature Biotechnology, 1999, 17, 1075-1081.	17.5	456
3	Recent developments in adjuvants for vaccines against infectious diseases. New Biotechnology, 2001, 18, 69-85.	2.7	300
4	A Cationic Nanoemulsion for the Delivery of Next-generation RNA Vaccines. Molecular Therapy, 2014, 22, 2118-2129.	8.2	255
5	Nanoparticles and microparticles as vaccine-delivery systems. Expert Review of Vaccines, 2007, 6, 797-808.	4.4	232
6	Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Advanced Drug Delivery Reviews, 1998, 32, 225-246.	13.7	216
7	Recent advances in vaccine adjuvants. Pharmaceutical Research, 2002, 19, 715-728.	3.5	211
8	Microparticles as vaccine adjuvants and delivery systems. Expert Review of Vaccines, 2003, 2, 269-283.	4.4	205
9	Induction of Potent Immune Responses by Cationic Microparticles with Adsorbed Human Immunodeficiency Virus DNA Vaccines. Journal of Virology, 2001, 75, 9037-9043.	3.4	186
10	Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine, 2008, 26, 552-561.	3.8	166
11	Endotoxin Limits in Formulations for Preclinical Research. Journal of Pharmaceutical Sciences, 2008, 97, 2041-2044.	3.3	161
12	Recent advances in veterinary vaccine adjuvants. International Journal for Parasitology, 2003, 33, 469-478.	3.1	155
13	Microparticle-based technologies for vaccines. Methods, 2006, 40, 10-19.	3.8	155
14	Rational design of small molecules as vaccine adjuvants. Science Translational Medicine, 2014, 6, 263ra160.	12.4	153
15	COMMENTARY: Acceptable Levels of Endotoxin in Vaccine Formulations During Preclinical Research. Journal of Pharmaceutical Sciences, 2011, 100, 34-37.	3.3	145
16	Microparticles for the delivery of DNA vaccines. Immunological Reviews, 2004, 199, 191-200.	6.0	132
17	A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. Journal of Controlled Release, 2001, 70, 267-276.	9.9	127
18	The vaccine adjuvant alum inhibits <scp>IL</scp> â€12 by promoting <scp>PI</scp> 3 kinase signaling while chitosan does not inhibit <scp>IL</scp> â€12 and enhances <scp>T</scp> h1 and <scp>T</scp> h17 responses. European Journal of Immunology, 2012, 42, 2709-2719.	2.9	124

#	Article	IF	CITATIONS
19	Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine, 1996, 14, 1523-1530.	3.8	121
20	CpG Oligodeoxynucleotides Adsorbed onto Polylactide-Co-Glycolide Microparticles Improve the Immunogenicity and Protective Activity of the Licensed Anthrax Vaccine. Infection and Immunity, 2005, 73, 828-833.	2.2	117
21	Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. Journal of Controlled Release, 2006, 110, 566-573.	9.9	109
22	Cationic microparticles are an effective delivery system for immune stimulatory cpG DNA. Pharmaceutical Research, 2001, 18, 1476-1479.	3.5	104
23	The long-term potential of biodegradable poly(lactideco-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Review of Vaccines, 2011, 10, 1731-1742.	4.4	101
24	Dissolvable Microneedle Patches for the Delivery of Cell-Culture-Derived Influenza Vaccine Antigens. Journal of Pharmaceutical Sciences, 2012, 101, 1021-1027.	3.3	97
25	Combination vaccines. Journal of Global Infectious Diseases, 2011, 3, 63.	0.5	95
26	Mucosal adjuvants and delivery systems for proteinâ€, DNA―and RNAâ€based vaccines. Immunology and Cell Biology, 2004, 82, 617-627.	2.3	91
27	Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs. Blood Advances, 2017, 1, 2329-2342.	5.2	90
28	Controlled delivery of diphtheria toxoid using biodegradable poly(D,L-lactide) microcapsules. Pharmaceutical Research, 1991, 08, 958-961.	3.5	86
29	Mechanisms of increased immunogenicity for DNA-based vaccines adsorbed onto cationic microparticles. Cellular Immunology, 2003, 225, 12-20.	3.0	83
30	A Practical Approach to the use of Nanoparticles for Vaccine Delivery. Journal of Pharmaceutical Sciences, 2006, 95, 2738-2750.	3.3	82
31	MF59 Emulsion Is an Effective Delivery System for a Synthetic TLR4 Agonist (E6020). Pharmaceutical Research, 2009, 26, 1477-1485.	3.5	80
32	Controlled release microparticles as a single dose hepatitis B vaccine: evaluation of immunogenicity in mice. Vaccine, 1997, 15, 475-481.	3.8	79
33	A preliminary evaluation of alternative adjuvants to alum using a range of established and new generation vaccine antigens. Vaccine, 2006, 24, 1680-1686.	3.8	79
34	Enhancing the therapeutic efficacy of CpG oligonucleotides using biodegradable microparticles. Advanced Drug Delivery Reviews, 2009, 61, 218-225.	13.7	79
35	Analysis of immunoglobulin transcripts and hypermutation following SHIVAD8 infection and protein-plus-adjuvant immunization. Nature Communications, 2015, 6, 6565.	12.8	77
36	A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum Vaccin, 2008, 4, 44-49.	2.4	76

#	Article	IF	CITATIONS
37	Enhanced Potency of Plasmid DNA Microparticle Human Immunodeficiency Virus Vaccines in Rhesus Macaques by Using a Priming-Boosting Regimen with Recombinant Proteins. Journal of Virology, 2005, 79, 8189-8200.	3.4	75
38	A cationic sub-micron emulsion (MF59/DOTAP) is an effective delivery system for DNA vaccines. Journal of Controlled Release, 2002, 79, 1-5.	9.9	73
39	Mucosal immunization with HIV-1 gag DNA on cationic microparticles prolongs gene expression and enhances local and systemic immunity. Vaccine, 2001, 20, 594-602.	3.8	71
40	Cationic microparticles are a potent delivery system for a HCV DNA vaccine. Vaccine, 2004, 23, 672-680.	3.8	70
41	Induction of Broad and Potent Anti-Human Immunodeficiency Virus Immune Responses in Rhesus Macaques by Priming with a DNA Vaccine and Boosting with Protein-Adsorbed Polylactide Coglycolide Microparticles. Journal of Virology, 2003, 77, 6087-6092.	3.4	67
42	Anionic microparticles are a potent delivery system for recombinant antigens from Neisseria meningitidis serotype B. Journal of Pharmaceutical Sciences, 2004, 93, 273-282.	3.3	64
43	Polylactide-Co-Glycolide Microparticles with Surface Adsorbed Antigens as Vaccine Delivery Systems. Current Drug Delivery, 2006, 3, 115-120.	1.6	63
44	Mucosal and Systemic Anti-HIV Responses in Rhesus Macaques following Combinations of Intranasal and Parenteral Immunizations. AIDS Research and Human Retroviruses, 2004, 20, 1269-1281.	1.1	60
45	Enhanced mucosal and systemic immune responses to Helicobacter pylori antigens through mucosal priming followed by systemic boosting immunizations. Immunology, 2003, 110, 86-94.	4.4	57
46	Adsorption of a Novel Recombinant Glycoprotein from HIV (Env gp120dV2 SF162) to Anionic PLG Microparticles Retains the Structural Integrity of the Protein, Whereas Encapsulation in PLG Microparticles Does Not. Pharmaceutical Research, 2004, 21, 2148-2152.	3.5	49
47	The effect of CTAB concentration in cationic PLG microparticles on DNA adsorption and in vivo performance. Pharmaceutical Research, 2003, 20, 247-251.	3.5	48
48	Charged polylactide co-glycolide microparticles as antigen delivery systems. Expert Opinion on Biological Therapy, 2004, 4, 483-491.	3.1	48
49	An Investigation of the Factors Controlling the Adsorption of Protein Antigens to Anionic PLG Microparticles. Journal of Pharmaceutical Sciences, 2005, 94, 2510-2519.	3.3	48
50	The potency of the adjuvant, CpG oligos, is enhanced by encapsulation in PLG microparticles. Journal of Pharmaceutical Sciences, 2008, 97, 1155-1164.	3.3	48
51	Controlled release microparticles as a single dose diphtheria toxoid vaccine: immunogenicity in small animal models. Vaccine, 1998, 16, 346-352.	3.8	47
52	Enhanced protective efficacy of a tuberculosis DNA vaccine by adsorption onto cationic PLG microparticles. Vaccine, 2004, 22, 2690-2695.	3.8	47
53	Variation of radon (Rn) progeny concentrations in outdoor air as a function of time, temperature and relative humidity. Radiation Measurements, 2005, 39, 213-217.	1.4	47
54	Biodegradable delivery system for single step immunization with tetanus toxoid. International Journal of Pharmaceutics, 1993, 93, R1-R5.	5.2	45

#	Article	IF	CITATIONS
55	Hepatitis C virus polyprotein vaccine formulations capable of inducing broad antibody and cellular immune responses. Journal of General Virology, 2006, 87, 2253-2262.	2.9	45
56	Aluminum Adjuvant Dose Guidelines in Vaccine Formulation for Preclinical Evaluations. Journal of Pharmaceutical Sciences, 2012, 101, 17-20.	3.3	43
57	Physicochemical and functional characterization of vaccine antigens and adjuvants. Expert Review of Vaccines, 2014, 13, 671-685.	4.4	40
58	The Development of Self-Emulsifying Oil-in-Water Emulsion Adjuvant and an Evaluation of the Impact of Droplet Size on Performance. Journal of Pharmaceutical Sciences, 2015, 104, 1352-1361.	3.3	39
59	Biodegradable delivery system for a birth control vaccine: immunogenicity studies in rats and monkeys. Pharmaceutical Research, 1995, 12, 1796-1800.	3.5	38
60	Incorporation of Phosphonate into Benzonaphthyridine Toll-like Receptor 7 Agonists for Adsorption to Aluminum Hydroxide. Journal of Medicinal Chemistry, 2016, 59, 5868-5878.	6.4	38
61	Advances in Vaccine Adjuvants For Infectious Diseases. Current HIV Research, 2003, 1, 309-320.	O.5	36
62	MF59 oil-in-water emulsion in combination with a synthetic TLR4 agonist (E6020) is a potent adjuvant for a combination Meningococcus vaccine. Human Vaccines and Immunotherapeutics, 2012, 8, 486-490.	3.3	34
63	Controlled release of LHRH-DT from bioerodible hydrogel microspheres. International Journal of Pharmaceutics, 1991, 76, R5-R8.	5.2	33
64	Flow cytometry: An alternative method for direct quantification of antigens adsorbed to aluminum hydroxide adjuvant. Analytical Biochemistry, 2011, 418, 224-230.	2.4	33
65	An alternative renewable source of squalene for use in emulsion adjuvants. Vaccine, 2011, 29, 6262-6268.	3.8	32
66	Immunogenicity studies on diphtheria toxoid loaded biodegradable microspheres. International Journal of Pharmaceutics, 1992, 85, R5-R8.	5.2	31
67	Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens. PLoS ONE, 2007, 2, e1063.	2.5	30
68	Effect of the strength of adsorption of HIV 1 SF162dV2gp140 to aluminumâ€containing adjuvants on the immune response. Journal of Pharmaceutical Sciences, 2011, 100, 3245-3250.	3.3	28
69	Dose-Dependent Protection against or Exacerbation of Disease by a Polylactide Glycolide Microparticle-Adsorbed, Alphavirus-Based Measles Virus DNA Vaccine in Rhesus Macaques. Vaccine Journal, 2008, 15, 697-706.	3.1	26
70	The role of adjuvants in the development of mucosal vaccines. Expert Opinion on Biological Therapy, 2005, 5, 953-965.	3.1	24
71	A modified process for preparing cationic polylactide-co-glycolide microparticles with adsorbed DNA. International Journal of Pharmaceutics, 2006, 327, 1-5.	5.2	23
72	Intranasal delivery of vaccines against HIV. Expert Opinion on Drug Delivery, 2006, 3, 247-259.	5.0	21

#	Article	IF	CITATIONS
73	β7-integrin-independent enhancement of mucosal and systemic anti-HIV antibody responses following combined mucosal and systemic gene delivery. Immunology, 2008, 123, 378-389.	4.4	21
74	Maintenance of long-term immunological memory by low avidity IgM-secreting cells in bone marrow after mucosal immunizations with cholera toxin adjuvant. Vaccine, 2004, 22, 1553-1563.	3.8	20
75	Characterization of antigens adsorbed to anionic PLG microparticles by XPS and TOFâ€SIMS. Journal of Pharmaceutical Sciences, 2008, 97, 1443-1453.	3.3	20
76	Polylactide-co-glycolide (PLG) microparticles modify the immune response to DNA vaccination. Vaccine, 2008, 26, 753-761.	3.8	19
77	A Two-Stage Strategy for Sterilization of Poly(lactide-co-glycolide) Particles by γ-Irradiation Does Not Impair Their Potency for Vaccine Delivery. Journal of Pharmaceutical Sciences, 2011, 100, 646-654.	3.3	19
78	Variation of indoor radon progeny concentration and its role in dose assessment. Journal of Environmental Radioactivity, 2008, 99, 539-545.	1.7	18
79	Micro/Nanoparticle Adjuvants: Preparation and Formulation with Antigens. Methods in Molecular Biology, 2010, 626, 91-101.	0.9	16
80	A Birth Control Vaccine is on the Horizon for Family Planning. Annals of Medicine, 1993, 25, 207-212.	3.8	15
81	The Preparation and Physicochemical Characterization of Aluminum Hydroxide/TLR7a, a Novel Vaccine Adjuvant Comprising a Small Molecule Adsorbed to Aluminum Hydroxide. Journal of Pharmaceutical Sciences, 2018, 107, 1577-1585.	3.3	10
82	Preparation of Highly Concentrated Influenza Vaccine for Use in Novel Delivery Approaches. Journal of Pharmaceutical Sciences, 2013, 102, 866-875.	3.3	9
83	Stable Nanoemulsions for the Delivery of Small Molecule Immune Potentiators. Journal of Pharmaceutical Sciences, 2018, 107, 2310-2314.	3.3	9
84	DNA Vaccines. Pharmaceutical Medicine, 2005, 19, 15-28.	0.4	7
85	MF59: A Safe and Potent Oil-in-Water Emulsion Adjuvant. , 0, , 115-129.		5
86	Surface-Charged Poly(Lactide-Co-Glycolide) Microparticles as Novel Antigen Delivery Systems. , 0, , 223-247.		3
87	Formulations and Delivery Systems for Mucosal Vaccines. , 2008, , 499-511.		2
88	Nanoparticles and Microparticles as Vaccine Adjuvants. , 2006, , 675-696.		2
89	Extent of Supercoiling in Plasmid DNA Vaccines. American Journal of Drug Delivery, 2006, 4, 195-199.	0.6	0
90	Cationic Microparticles and Emulsions As Effective Delivery Systems for Immune Stimulatory CpG DNA. , 2004, , 265-276.		0

6

IF

CITATIONS

ARTICLE

91 Microparticles and DNA Vaccines. , 2006, , 257-270.