
Nicole A Horenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1199432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nicotinic Activity of Arecoline, the Psychoactive Element of "Betel Nuts", Suggests a Basis for Habitual Use and Anti-Inflammatory Activity. PLoS ONE, 2015, 10, e0140907.	2.5	96
2	Activation and Desensitization of Nicotinic $\hat{l}\pm7$ -type Acetylcholine Receptors by Benzylidene Anabaseines and Nicotine. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 791-807.	2.5	83
3	Multiple Pharmacophores for the Selective Activation of Nicotinic α7-Type Acetylcholine Receptors. Molecular Pharmacology, 2008, 74, 1496-1511.	2.3	52
4	The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. Journal of General Physiology, 2011, 137, 369-384.	1.9	44
5	Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation. Journal of Biological Chemistry, 2016, 291, 5049-5067.	3.4	43
6	Therapeutic Targeting of <i>α</i> 7 Nicotinic Acetylcholine Receptors. Pharmacological Reviews, 2021, 73, 1118-1149.	16.0	43
7	Synthesis and evaluation of a conditionally-silent agonist for the α7 nicotinic acetylcholine receptor. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4145-4149.	2.2	41
8	The Minimal Pharmacophore for Silent Agonism of the α7 Nicotinic Acetylcholine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 665-680.	2.5	41
9	Anti-inflammatory Silent Agonists. ACS Medicinal Chemistry Letters, 2017, 8, 989-991.	2.8	38
10	The Activity of GAT107, an Allosteric Activator and Positive Modulator of α7 Nicotinic Acetylcholine Receptors (nAChR), Is Regulated by Aromatic Amino Acids That Span the Subunit Interface. Journal of Biological Chemistry, 2014, 289, 4515-4531.	3.4	36
11	A silent agonist of α7 nicotinic acetylcholine receptors modulates inflammation ex vivo and attenuates EAE. Brain, Behavior, and Immunity, 2020, 87, 286-300.	4.1	35
12	Effects at a distance in \hat{l} ±7 nAChR selective agonists: benzylidene substitutions that regulate potency and efficacy. Neuropharmacology, 2004, 46, 1023-1038.	4.1	32
13	Reversal of Agonist Selectivity by Mutations of Conserved Amino Acids in the Binding Site of Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2007, 282, 5899-5909.	3.4	31
14	Dissection of N,N-diethyl-N′-phenylpiperazines as α7 nicotinic receptor silent agonists. Bioorganic and Medicinal Chemistry, 2016, 24, 286-293.	3.0	31
15	Persistent activation of α7 nicotinic ACh receptors associated with stable induction of different desensitized states. British Journal of Pharmacology, 2018, 175, 1838-1854.	5.4	31
16	Identification of a Gene Cluster that Initiates Azasugar Biosynthesis in <i>Bacillus amyloliquefaciens</i> . ChemBioChem, 2011, 12, 2147-2150.	2.6	30
17	Cysteine accessibility analysis of the human alpha7 nicotinic acetylcholine receptor ligand-binding domain identifies L119 as a gatekeeper. Neuropharmacology, 2011, 60, 159-171.	4.1	26
18	Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds. Nicotine and Tobacco Research, 2019, 21, 805-812.	2.6	25

NICOLE A HORENSTEIN

#	Article	IF	CITATIONS
19	Differential Regulation of Receptor Activation and Agonist Selectivity by Highly Conserved Tryptophans in the Nicotinic Acetylcholine Receptor Binding Site. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 40-53.	2.5	24
20	Allosteric Agonism of α7 Nicotinic Acetylcholine Receptors: Receptor Modulation Outside the Orthosteric Site. Molecular Pharmacology, 2019, 95, 606-614.	2.3	24
21	Tethered Agonist Analogs as Site-Specific Probes for Domains of the Human α7 Nicotinic Acetylcholine Receptor that Differentially Regulate Activation and Desensitization. Molecular Pharmacology, 2010, 78, 1012-1025.	2.3	23
22	Macroscopic and Microscopic Activation of <i>α</i> 7 Nicotinic Acetylcholine Receptors by the Structurally Unrelated Allosteric Agonist-Positive Allosteric Modulators (ago-PAMs) B-973B and GAT107. Molecular Pharmacology, 2019, 95, 43-61.	2.3	21
23	The Antinociceptive and Anti-Inflammatory Properties of the <i>î±</i> 7 nAChR Weak Partial Agonist <i>p</i> -CF ₃ <i>N</i> , <i>N</i> -diethyl- <i>N</i> ′-phenylpiperazine. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 203-214.	2.5	17
24	Identification of α7 Nicotinic Acetylcholine Receptor Silent Agonists Based on the Spirocyclic Quinuclidineâ€Î" ² â€Isoxazoline Scaffold: Synthesis and Electrophysiological Evaluation. ChemMedChem, 2017, 12, 1335-1348.	3.2	15
25	A new route into hexahydro-cyclopenta[b]pyrrole-cis-3a,6-diols. Synthesis of constrained bicyclic analogues of pyrrolidine azasugars. Tetrahedron, 2005, 61, 10462-10469.	1.9	13
26	Design, synthesis, and electrophysiological evaluation of NS6740 derivatives: Exploration of the structure-activity relationship for alpha7 nicotinic acetylcholine receptor silent activation. European Journal of Medicinal Chemistry, 2020, 205, 112669.	5.5	12
27	Differing Activity Profiles of the Stereoisomers of 2,3,5,6TMP-TQS, a Putative Silent Allosteric Modulator of <i>α</i> 7 nAChR. Molecular Pharmacology, 2020, 98, 292-302.	2.3	12
28	Comparison of the Anti-inflammatory Properties of Two Nicotinic Acetylcholine Receptor Ligands, Phosphocholine and pCF3-diEPP. Frontiers in Cellular Neuroscience, 2022, 16, 779081.	3.7	11
29	Sulfonium as a Surrogate for Ammonium: A New α7 Nicotinic Acetylcholine Receptor Partial Agonist with Desensitizing Activity. Journal of Medicinal Chemistry, 2017, 60, 7928-7934.	6.4	10
30	Heteromeric Neuronal Nicotinic Acetylcholine Receptors with Mutant <i>β</i> Subunits Acquire Sensitivity to <i>α</i> 7-Selective Positive Allosteric Modulators. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 252-268.	2.5	10
31	Selective Agonists and Antagonists of α9 Versus α7 Nicotinic Acetylcholine Receptors. ACS Chemical Neuroscience, 2022, 13, 624-637.	3.5	10
32	Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the α7 nicotinic acetylcholine receptor subtype: Synthesis and electrophysiological evaluation. European Journal of Medicinal Chemistry, 2018, 160, 207-228.	5.5	9
33	Potential State-selective Hydrogen Bond Formation Can Modulate Activation and Desensitization of the α7 Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2012, 287, 21957-21969.	3.4	8
34	Synthesis of saccharin-glycoconjugates targeting carbonic anhydrase using a one-pot cyclization/deprotection strategy. Carbohydrate Research, 2019, 476, 65-70.	2.3	8
35	Characterization of the PLP-dependent transaminase initiating azasugar biosynthesis. Biochemical Journal, 2018, 475, 2241-2256.	3.7	7
36	Synthesis of endo-(3-azabicyclo[3.1.0]hex-6-yl)-methanol and derivatives as new geometric/charge mimics of glycosyltransfer transition states. Tetrahedron Letters, 2004, 45, 9505-9507.	1.4	6

NICOLE A HORENSTEIN

#	ARTICLE	IF	CITATIONS
37	Experimental and Metabolic Modeling Evidence for a Folate-Cleaving Side-Activity of Ketopantoate Hydroxymethyltransferase (PanB). Frontiers in Microbiology, 2016, 7, 431.	3.5	6
38	Functional Analysis of a Gene Cluster from <i>Chitinophaga pinensis</i> Involved in Biosynthesis of the Pyrrolidine Azasugar DAB-1. Journal of Natural Products, 2019, 82, 3401-3409.	3.0	6
39	Comparative genomic analysis of azasugar biosynthesis. AMB Express, 2021, 11, 120.	3.0	5
40	Coffee and cigarettes: Modulation of high and low sensitivity α4β2 nicotinic acetylcholine receptors by n-MP, a biomarker of coffee consumption. Neuropharmacology, 2022, 216, 109173.	4.1	5
41	Synthesis of H-bonding probes of $\hat{l}\pm7$ nAChR agonist selectivity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 474-476.	2.2	4
42	Synthesis of 3,5-diazabicyclo [5.1.0] octenes. A new platform to mimic glycosidase transition states. Tetrahedron, 2010, 66, 5566-5572.	1.9	4
43	Stable desensitization of α7 nicotinic acetylcholine receptors by NS6740 requires interaction with S36 in the orthosteric agonist binding site. European Journal of Pharmacology, 2021, 905, 174179.	3.5	4
44	Point-to-point ligand–receptor interactions across the subunit interface modulate the induction and stabilization of conformational states of alpha7 nAChR by benzylidene anabaseines. Biochemical Pharmacology, 2013, 85, 817-828.	4.4	3
45	Sulfonium Ligands of the \hat{l} ±7 nAChR. Molecules, 2021, 26, 5643.	3.8	2
46	Enzymatic synthesis of [1-14C-N-acetyl, P18O2] cytidine monophosphate neuraminic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 1007-1017.	1.0	1
47	A Computational Analysis of the Factors Governing the Dynamics of α7 nAChR and Its Homologs. Biophysical Journal, 2020, 119, 1656-1669.	0.5	1