
Gabor Galiba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1199344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light Intensity- and Spectrum-Dependent Redox Regulation of Plant Metabolism. Antioxidants, 2022, 11, 1311.	5.1	9
2	Elucidation of molecular and hormonal background of early growth cessation and endodormancy induction in two contrasting Populus hybrid cultivars. BMC Plant Biology, 2021, 21, 111.	3.6	2
3	The Impact of Far-Red Light Supplementation on Hormonal Responses to Cold Acclimation in Barley. Biomolecules, 2021, 11, 450.	4.0	10
4	Effect of combination of light and drought stress on physiology and oxidative metabolism of rice plants. Plant Science Today, 2021, 8, .	0.7	0
5	Anticancer compounds production in Catharanthus roseus by methyl jasmonate and UV-B elicitation. South African Journal of Botany, 2021, 142, 34-41.	2.5	8
6	Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. Theoretical and Applied Genetics, 2021, , 1.	3.6	9
7	Plasmaâ€activated water to improve the stress tolerance of barley. Plasma Processes and Polymers, 2020, 17, 1900123.	3.0	28
8	Decreased R:FR Ratio in Incident White Light Affects the Composition of Barley Leaf Lipidome and Freezing Tolerance in a Temperature-Dependent Manner. International Journal of Molecular Sciences, 2020, 21, 7557.	4.1	7
9	Temperature and Light-Quality-Dependent Regulation of Freezing Tolerance in Barley. Plants, 2020, 9, 83.	3.5	18
10	Role of lightâ€intensityâ€dependent changes in thiol and amino acid metabolism in the adaptation of wheat to drought. Journal of Agronomy and Crop Science, 2019, 205, 562-570.	3.5	9
11	Overexpression of Two Upstream Phospholipid Signaling Genes Improves Cold Stress Response and Hypoxia Tolerance, but Leads to Developmental Abnormalities in Barley. Plant Molecular Biology Reporter, 2019, 37, 314-326.	1.8	5
12	Identification, Structural and Functional Characterization of Dormancy Regulator Genes in Apricot (Prunus armeniaca L.). Frontiers in Plant Science, 2019, 10, 402.	3.6	28
13	Light intensity and spectrum affect metabolism of glutathione and amino acids at transcriptional level. PLoS ONE, 2019, 14, e0227271.	2.5	39
14	Identification of a redox-dependent regulatory network of miRNAs and their targets in wheat. Journal of Experimental Botany, 2019, 70, 85-99.	4.8	13
15	LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity. Frontiers in Plant Science, 2018, 9, 605.	3.6	73
16	Light and Temperature Signalling at the Level of CBF14 Gene Expression in Wheat and Barley. Plant Molecular Biology Reporter, 2017, 35, 399-408.	1.8	16
17	Redox regulation of free amino acid levels in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2017, 159, 264-276.	5.2	18
18	Effect of the Winter Wheat Cheyenne 5A Substituted Chromosome on Dynamics of Abscisic Acid and Cytokinins in Freezing-Sensitive Chinese Spring Genetic Background. Frontiers in Plant Science, 2017, 8, 2033.	3.6	9

#	Article	IF	CITATIONS
19	Circadian and Light Regulated Expression of CBFs and their Upstream Signalling Genes in Barley. International Journal of Molecular Sciences, 2017, 18, 1828.	4.1	27
20	Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L.) collection. PLoS ONE, 2017, 12, e0189265.	2.5	70
21	The mvp2 mutation affects the generative transition through the modification of transcriptome pattern, salicylic acid and cytokinin metabolism in Triticum monococcum. Journal of Plant Physiology, 2016, 202, 21-33.	3.5	10
22	Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in coldâ€shock response in wheat. Plant Science, 2016, 253, 86-97.	3.6	21
23	Relationship between SPAD value and grain yield can be affected by cultivar, environment and soil nitrogen content in wheat. Euphytica, 2016, 211, 103-112.	1.2	58
24	Light-quality and temperature-dependent <i>CBF14</i> gene expression modulates freezing tolerance in cereals. Journal of Experimental Botany, 2016, 67, 1285-1295.	4.8	37
25	Comparison of redox and gene expression changes during vegetative/generative transition in the crowns and leaves of chromosome 5A substitution lines of wheat under low-temperature condition. Journal of Applied Genetics, 2016, 57, 1-13.	1.9	13
26	The cold response of CBF genes in barley is regulated by distinct signaling mechanisms. Journal of Plant Physiology, 2015, 181, 42-49.	3.5	14
27	Pleiotropic effect of chromosome 5A and the mvp mutation on the metabolite profile during cold acclimation and the vegetative/generative transition in wheat. BMC Plant Biology, 2015, 15, 57.	3.6	13
28	The expression of <i>CBF</i> genes at <i>Fr-2</i> locus is associated with the level of frost tolerance in Bulgarian winter wheat cultivars. Biotechnology and Biotechnological Equipment, 2014, 28, 392-401.	1.3	12
29	Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level. Environmental and Experimental Botany, 2014, 101, 12-25.	4.2	42
30	Central role of the flowering repressor ZCCT2 in the redox control of freezing tolerance and the initial development of flower primordia in wheat. BMC Plant Biology, 2014, 14, 91.	3.6	25
31	Redox control of plant growth and development. Plant Science, 2013, 211, 77-91.	3.6	138
32	Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theoretical and Applied Genetics, 2013, 126, 2683-2697.	3.6	47
33	Cold Response of Dedifferentiated Barley Cells at the Gene Expression, Hormone Composition, and Freezing Tolerance Levels: Studies on Callus Cultures. Molecular Biotechnology, 2013, 54, 337-349.	2.4	20
34	Capacity to control oxidative stress-induced caspase-like activity determines the level of tolerance to salt stress in two contrasting maize genotypes. Acta Physiologiae Plantarum, 2013, 35, 31-40.	2.1	10
35	Nitric oxide affects salt-induced changes in free amino acid levels in maize. Journal of Plant Physiology, 2013, 170, 1020-1027.	3.5	16
36	Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Journal of Experimental Botany, 2013, 64, 1849-1862.	4.8	108

#	Article	IF	CITATIONS
37	Hormones, NO, Antioxidants and Metabolites as Key Players in Plant Cold Acclimation. , 2013, , 73-87.		6
38	Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3 Biotech, 2012, 2, 233-240.	2.2	25
39	Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. Journal of Plant Physiology, 2012, 169, 567-576.	3.5	209
40	The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. Journal of Applied Genetics, 2012, 53, 133-143.	1.9	48
41	Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Science, 2011, 180, 61-68.	3.6	56
42	Redox changes during cold acclimation affect freezing tolerance but not the vegetative/reproductive transition of the shoot apex in wheat. Plant Biology, 2011, 13, 757-766.	3.8	31
43	Could EST-based markers be used for the marker-assisted selection of drought tolerant barley (Hordeum vulgare) lines?. Euphytica, 2011, 178, 373-391.	1.2	16
44	Regulation of gene expression by chromosome 5A during cold hardening in wheat. Molecular Genetics and Genomics, 2010, 283, 351-363.	2.1	31
45	Regulation of Freezing Tolerance and Flowering in Temperate Cereals: The <i>VRN-1</i> Connection Â. Plant Physiology, 2010, 153, 1846-1858.	4.8	162
46	Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics, 2009, 10, 279.	2.8	137
47	Mapping of loci affecting copper tolerance in wheat—The possible impact of the vernalization gene Vrn-A1. Environmental and Experimental Botany, 2009, 65, 369-375.	4.2	14
48	Glutathione as an Antioxidant and Regulatory Molecule in Plants Under Abiotic Stress Conditions. Journal of Plant Growth Regulation, 2009, 28, 66-80.	5.1	343
49	Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Science, 2009, 176, 12-19.	3.6	158
50	Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Molecular Biology, 2008, 67, 257-270.	3.9	103
51	Stress hormones and abiotic stresses have different effects on antioxidants in maize lines with different sensitivity. Plant Biology, 2008, 10, 563-572.	3.8	65
52	Restricted transpiration may not result in improved drought tolerance in a competitive environment for water. Plant Science, 2008, 174, 200-204.	3.6	14
53	Deletions of chromosome 5A affect free amino acid and polyamine levels in wheat subjected to salt stress. Environmental and Experimental Botany, 2007, 60, 193-201.	4.2	12
54	Effect of Drought Stress at Supraoptimal Temperature on Polyamine Concentrations in Transgenic Soybean with Increased Proline Levels. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 833-839.	1.4	17

#	Article	IF	CITATIONS
55	Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content. Biologia Plantarum, 2006, 50, 793-796.	1.9	49
56	A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum. Molecular Genetics and Genomics, 2006, 275, 193-203.	2.1	146
57	Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiologia Plantarum, 2005, 124, 227-235.	5.2	99
58	The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Molecular Genetics and Genomics, 2005, 274, 506-514.	2.1	123
59	Genetic Manipulation of Proline Accumulation Influences the Concentrations of Other Amino Acids in Soybean Subjected to Simultaneous Drought and Heat Stress. Journal of Agricultural and Food Chemistry, 2005, 53, 7512-7517.	5.2	42
60	Abiotic stress-induced changes in glutathione and thioredoxin h levels in maize. Environmental and Experimental Botany, 2004, 52, 101-112.	4.2	37
61	Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology, 2004, 31, 1149.	2.1	107
62	Heat tolerance together with heat stress-induced changes in glutathione and hydroxymethylglutathione levels is affected by chromosome 5A of wheat. Plant Science, 2004, 166, 451-458.	3.6	27
63	Effect of osmotic stress on glutathione and hydroxymethylglutathione accumulation in wheat. Journal of Plant Physiology, 2004, 161, 785-794.	3.5	40
64	Cold acclimation and abscisic acid induced alterations in carbohydrate content in calli of wheat genotypes differing in frost tolerance. Journal of Plant Physiology, 2004, 161, 131-133.	3.5	13
65	Induction of Clutathione Synthesis and Clutathione Reductase Activity by Abiotic Stresses in Maize and Wheat. Scientific World Journal, The, 2002, 2, 1699-1705.	2.1	35
66	Involvement of Glutathione and Carbohydrate Biosynthesis Moreover COR14B Gene Expression in Wheat Cold Acclimation. , 2002, , 139-159.		2
67	Glutathione reductase activity and chilling tolerance are induced by a hydroxylamine derivative BRX-156 in maize and soybean. Plant Science, 2001, 160, 943-950.	3.6	15
68	Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiologia Plantarum, 2001, 113, 158-164.	5.2	225
69	Title is missing!. Euphytica, 2001, 119, 173-177.	1.2	11
70	Osmotic and Salt Stressâ€Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop Science, 2000, 40, 482-487.	1.8	352
71	Genetic study of glutathione accumulation during cold hardening in wheat. Planta, 2000, 210, 295-301.	3.2	110
72	Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta, 2000, 211, 528-536.	3.2	65

#	Article	IF	CITATIONS
73	The cold dependent accumulation of COR TMC-AP3 in cereals with contrasting, frost tolerance is regulated by different mRNA expression and protein turnover. Plant Science, 2000, 156, 47-54.	3.6	8
74	Frost hardiness depending on carbohydrate changes during cold acclimation in wheat. Plant Science, 1999, 144, 85-92.	3.6	87
75	Osmotic and Salt Stresses Induced Differential Alteration in Water-Soluble Carbohydrate Content in Wheat Seedlings. Journal of Agricultural and Food Chemistry, 1998, 46, 5347-5354.	5.2	46
76	Mapping of Genes Controlling Cold Hardiness on Wheat 5A and its Homologous Chromosomes of Cereals. , 1997, , 89-98.		1
77	Drought and Salt Tolerance are not Necessarily Linked:A Study on Wheat Varieties Differing in Drought Tolerance under Consecutive Water and Salinity Stresses. Journal of Plant Physiology, 1995, 145, 168-174.	3.5	56
78	Chromosomal localization of osmotic and salt stress-induced differential alterations in polyamine content in wheat. Plant Science, 1993, 92, 203-211.	3.6	48
79	Possible chromosomal location of genes determining the osmoregulation of wheat. Theoretical and Applied Genetics, 1992, 85, 415-418.	3.6	42
80	Responses to osmotic and NaCl stress of wheat varieties differing in drought and salt tolerance in callus cultures. Plant Science, 1991, 73, 227-232.	3.6	43
81	Dependence of wheat callus growth, differentiation and mineral content on carbohydrate supply. Plant Science, 1986, 45, 65-70.	3.6	31
82	Differences in the lightâ€dependent changes of the glutathione metabolism during cold acclimation in wheat varieties with different freezing tolerance. Journal of Agronomy and Crop Science, 0, , .	3.5	1