
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11992691/publications.pdf Version: 2024-02-01

ANDI REN-ZE'EN

#	Article	IF	CITATIONS
1	A Necessary Role for Increased Biglycan Expression during L1-Mediated Colon Cancer Progression. International Journal of Molecular Sciences, 2022, 23, 445.	4.1	5
2	The Collagen-Modifying Enzyme PLOD2 Is Induced and Required during L1-Mediated Colon Cancer Progression. International Journal of Molecular Sciences, 2021, 22, 3552.	4.1	16
3	Wnt/β-Catenin Target Genes in Colon Cancer Metastasis: The Special Case of L1CAM. Cancers, 2020, 12, 3444.	3.7	21
4	Recent insights into the role of <scp>L1CAM</scp> in cancer initiation and progression. International Journal of Cancer, 2020, 147, 3292-3296.	5.1	17
5	Increased expression of cathepsin D is required for L1-mediated colon cancer progression. Oncotarget, 2019, 10, 5217-5228.	1.8	21
6	ISG15 induction is required during L1-mediated colon cancer progression and metastasis. Oncotarget, 2019, 10, 7122-7131.	1.8	10
7	The intestinal stem cell regulating gene ASCL2 is required for L1-mediated colon cancer progression. Cancer Letters, 2018, 424, 9-18.	7.2	20
8	Cell–cell adhesion: linking Wnt/l̂²-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Research, 2018, 7, 1488.	1.6	141
9	Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Research, 2016, 5, 699.	1.6	145
10	The Wnt Target Gene L1 in Colon Cancer Invasion and Metastasis. Cancers, 2016, 8, 48.	3.7	12
11	<i>Clusterin</i> , a gene enriched in intestinal stem cells, is required for L1-mediated colon cancer metastasis. Oncotarget, 2015, 6, 34389-34401.	1.8	42
12	c-Kit Is Suppressed in Human Colon Cancer Tissue and Contributes to L1-Mediated Metastasis. Cancer Research, 2013, 73, 5754-5763.	0.9	32
13	L1-Mediated Colon Cancer Cell Metastasis Does Not Require Changes in EMT and Cancer Stem Cell Markers. Molecular Cancer Research, 2011, 9, 14-24.	3.4	51
14	Nuclear factor-κB signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells. Journal of Cell Science, 2010, 123, 2135-2143.	2.0	89
15	Coordinating changes in cell adhesion and phenotype during EMT-like processes in cancer. F1000 Biology Reports, 2010, 2, 86.	4.0	6
16	The cell adhesion nectinâ€like molecules (Necl) 1 and 4 suppress the growth and tumorigenic ability of colon cancer cells. Journal of Cellular Biochemistry, 2009, 108, 326-336.	2.6	41
17	L1 cell adhesion molecule (L1CAM) in invasive tumors. Cancer Letters, 2009, 282, 137-145.	7.2	114
18	L1-CAM in cancerous tissues. Expert Opinion on Biological Therapy, 2008, 8, 1749-1757.	3.1	76

#	Article	IF	CITATIONS
19	Epithelial–mesenchymal transition and the invasive potential of tumors. Trends in Molecular Medicine, 2008, 14, 199-209.	6.7	304
20	Expression of L1-CAM and ADAM10 in Human Colon Cancer Cells Induces Metastasis. Cancer Research, 2007, 67, 7703-7712.	0.9	186
21	Fascin, a Novel Target of β-Catenin-TCF Signaling, Is Expressed at the Invasive Front of Human Colon Cancer. Cancer Research, 2007, 67, 6844-6853.	0.9	249
22	β atenin signaling in biological control and cancer. Journal of Cellular Biochemistry, 2007, 102, 820-828.	2.6	155
23	Targeting the active β-catenin pathway to treat cancer cells. Molecular Cancer Therapeutics, 2006, 5, 2861-2871.	4.1	29
24	Prototypical Type I E-cadherin and Type II Cadherin-7 Mediate Very Distinct Adhesiveness through Their Extracellular Domains. Journal of Biological Chemistry, 2006, 281, 2901-2910.	3.4	101
25	L1, a novel target of \hat{l}^2 -catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. Journal of Cell Biology, 2005, 168, 633-642.	5.2	335
26	The Shed Ectodomain of Nr-CAM Stimulates Cell Proliferation and Motility, and Confers Cell Transformation. Cancer Research, 2005, 65, 11605-11612.	0.9	49
27	Downregulation of \hat{l}^2 -catenin by p53 involves changes in the rate of \hat{l}^2 -catenin phosphorylation and Axin dynamics. Oncogene, 2004, 23, 4444-4453.	5.9	89
28	Autoregulation of E-cadherin expression by cadherin–cadherin interactions. Journal of Cell Biology, 2003, 163, 847-857.	5.2	453
29	IKKα Regulates Mitogenic Signaling through Transcriptional Induction of Cyclin D1 via Tcf. Molecular Biology of the Cell, 2003, 14, 585-599.	2.1	142
30	Nr-CAM is a target gene of the \hat{l}^2 -catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes and Development, 2002, 16, 2058-2072.	5.9	165
31	Regulation of p53. Annals of the New York Academy of Sciences, 2002, 973, 374-383.	3.8	92
32	The cadherin-catenin adhesion system in signaling and cancer. Journal of Clinical Investigation, 2002, 109, 987-991.	8.2	247
33	Regulation of S33/S37 phosphorylated β-catenin in normal and transformed cells. Journal of Cell Science, 2002, 115, 2771-2780.	2.0	103
34	De novo formation of focal complex-like structures in host cells by invading Streptococci. Molecular Microbiology, 2001, 41, 561-573.	2.5	102
35	Cadherin Sequences That Inhibit β-Catenin Signaling: A Study in Yeast and Mammalian Cells. Molecular Biology of the Cell, 2001, 12, 1177-1188.	2.1	52
36	Down-Regulation of \hat{I}^2 -Catenin by Activated p53. Molecular and Cellular Biology, 2001, 21, 6768-6781.	2.3	203

#	Article	IF	CITATIONS
37	Nuclear Localization of β-Catenin and Plakoglobin in Primary and Metastatic Human Colonic Carcinomas, Colonic Adenomas, and Normal Colon. International Journal of Surgical Pathology, 2001, 9, 273-279.	0.8	12
38	Autoregulation of actin synthesis requires the 3'-UTR of actin mRNA and protects cells from actin overproduction. , 2000, 76, 1-12.		27
39	Differential interaction of plakoglobin and β-catenin with the ubiquitin-proteasome system. Oncogene, 2000, 19, 1992-2001.	5.9	61
40	The Integrin-linked Kinase Regulates the Cyclin D1 Gene through Glycogen Synthase Kinase 3β and cAMP-responsive Element-binding Protein-dependent Pathways. Journal of Biological Chemistry, 2000, 275, 32649-32657.	3.4	225
41	Caveolin-1 Expression Inhibits Wnt/β-Catenin/Lef-1 Signaling by Recruiting β-Catenin to Caveolae Membrane Domains. Journal of Biological Chemistry, 2000, 275, 23368-23377.	3.4	162
42	Differential Mechanisms of LEF/TCF Family-Dependent Transcriptional Activation by β-Catenin and Plakoglobin. Molecular and Cellular Biology, 2000, 20, 4238-4252.	2.3	176
43	The Integration of Cell Adhesion with Gene Expression: The Role of β-Catenin. Experimental Cell Research, 2000, 261, 75-82.	2.6	89
44	Focal Adhesions and Adherens Junctions: Their Role in Tumorigenesis. Advances in Molecular and Cell Biology, 1999, 28, 135-163.	0.1	4
45	The Dual Role of Cytoskeletal Anchor Proteins in Cell Adhesion and Signal Transduction. Annals of the New York Academy of Sciences, 1999, 886, 37-47.	3.8	37
46	Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer. Current Opinion in Cell Biology, 1998, 10, 629-639.	5.4	320
47	Differential Nuclear Translocation and Transactivation Potential of β-Catenin and Plakoglobin. Journal of Cell Biology, 1998, 141, 1433-1448.	5.2	253
48	Regulation of β-Catenin Levels and Localization by Overexpression of Plakoglobin and Inhibition of the Ubiquitin-Proteasome System. Journal of Cell Biology, 1997, 139, 1325-1335.	5.2	139
49	Autoregulation of actin synthesis responds to monomeric actin levels. Journal of Cellular Biochemistry, 1997, 65, 469-478.	2.6	42
50	The use of two-dimensional gel electrophoresis in studies on the role of cytoskeletal plaque proteins as tumor suppressors. Electrophoresis, 1996, 17, 1752-1763.	2.4	5
51	Regulation of adherens junction protein expression in growth-activated 3T3 cells and in regenerating liver. Experimental Cell Research, 1992, 202, 477-486.	2.6	46
52	Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. Cytoskeleton, 1992, 22, 127-134.	4.4	145
53	Application of two-dimensional gel electrophoresis in the study of cytoskeletal protein regulation during growth activation and differentiation. Electrophoresis, 1990, 11, 191-200.	2.4	30
54	Regulation of tropomyosin expression in transformed granulosa cell lines with steroidogenic ability. Developmental Biology, 1990, 142, 115-128.	2.0	16

#	Article	IF	CITATIONS
55	Regulation of Heat Shock Protein Synthesis by Gonadotropins in Cultured Granulosa Cells*. Endocrinology, 1989, 124, 2584-2594.	2.8	15
56	Regulation of fibronectin, integrin and cytoskeleton expression in differentiating adipocytes: inhibition by extracellular matrix and polylysine. Differentiation, 1989, 42, 65-74.	1.9	128
57	Coordinated regulation of morphological and biochemical differentiation in a steroidogenic cell: the granulosa cell model. Trends in Biochemical Sciences, 1989, 14, 377-382.	7.5	68
58	Regulation of Cytoskeletal Protein Organization and Expression in Human Granulosa Cells in Response to Gonadotropin Treatment*. Endocrinology, 1989, 124, 1033-1041.	2.8	55
59	Regulation of tropomyosin expression in the maturing ovary and in primary granulosa cell cultures. Developmental Biology, 1989, 135, 191-201.	2.0	21
60	Cell Shape and Cell Contacts: Molecular Approaches to Cytoskeleton Expression. , 1989, , 95-119.		5
61	The pattern of cytokeratin synthesis is a marker of type 2 cell differentiation in adult and maturing fetal lung alveolar cells. Developmental Biology, 1988, 129, 505-515.	2.0	56
62	Cell-contact and-architecture of malignant cells and their relationship to metastasis. Cancer and Metastasis Reviews, 1987, 6, 3-21.	5.9	67
63	Gonadotropin-induced differentiation of granulosa cells is associated with the co-ordinated regulation of cytoskeletal proteins involved in cell-contact formation. Differentiation, 1987, 34, 222-235.	1.9	40
64	Tumor promoter-induced disruption of junctional complexes in cultured epithelial cells is followed by the inhibition of cytokeratin and desmoplakin synthesis. Experimental Cell Research, 1986, 164, 335-352.	2.6	58
65	Cleavage of vimentin in dense cell cultures. Experimental Cell Research, 1986, 166, 47-62.	2.6	11
66	The relationship between cytoplasmic organization, gene expression and morphogenesis. Trends in Biochemical Sciences, 1986, 11, 478-481.	7.5	85
67	Cell contact- and shape-dependent regulation of vinculin synthesis in cultured fibroblasts. Nature, 1986, 319, 787-791.	27.8	84
68	The cytoskeleton in cancer cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 1985, 780, 197-212.	7.4	78
69	Cell-Cell Interaction and Cell Configuration Related Control of Cytokeratins and Vimentin Expression in Epithelial Cells and in Fibroblasts. Annals of the New York Academy of Sciences, 1985, 455, 597-613.	3.8	32
70	Cell density and cell shape-related regulation of vimentin and cytokeratin synthesis. Experimental Cell Research, 1985, 157, 520-532.	2.6	51
71	The synaptonemal complex as part of the nuclear matrix of the flour moth, Ephestia kuehniella. Experimental Cell Research, 1984, 153, 99-108.	2.6	12
72	Control of intermediate filament protein synthesis by cell-cell interaction and cell configuration. FEBS Letters, 1984, 171, 107-110.	2.8	12

5

#	Article	IF	CITATIONS
73	Control of late Simian virus 40 transcription by the attenuation mechanism and transcriptionally active ternary complexes are associated with the nuclear matrix. Journal of Molecular Biology, 1984, 172, 467-487.	4.2	52
74	Virus replication in infected epithelial cells is coupled to cell shape-responsive metabolic controls. Journal of Cellular Physiology, 1983, 114, 145-152.	4.1	25
75	Herpes simplex virus and protein transport are associated with the cytoskeletal framework and the nuclear matrix in infected BSC-1 cells. Virology, 1983, 129, 501-507.	2.4	49
76	Processing of SV40 RNA is associated with the nuclear matrix and is not followed by the accumulation of low-molecular-weight RNA products. Virology, 1983, 125, 475-479.	2.4	24
77	Growth control and cell spreading: Differential response in preneoplastic and in metastatic cell variants. International Journal of Cancer, 1982, 29, 711-715.	5.1	24
78	The metabolism of SV40 RNA is associated with the cytoskeletal framework. Virology, 1981, 111, 475-487.	2.4	57
79	Multinucleation and inhibition of cytokinesis in suspended cells: Reversal upon reattachment to a substrate. Cell, 1981, 26, 107-115.	28.9	62
80	The regulation of RNA metabolism in suspended and reattached anchorage-dependent 3T6 fibroblasts. Journal of Cellular Physiology, 1980, 103, 247-254.	4.1	55
81	Protein synthesis requires cell-surface contact while nuclear events respond to cell shape in anchorage-dependent fibroblasts. Cell, 1980, 21, 365-372.	28.9	367
82	Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell, 1979, 17, 319-325.	28.9	358
83	The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell, 1979, 17, 859-865.	28.9	314
84	Altered translatability of messenger RNA from suspended anchorage-dependent fibroblasts: Reversal upon cell attachment to a surface. Cell, 1978, 15, 627-637.	28.9	164
85	The control of mRNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts. Cell, 1978, 14, 931-939.	28.9	272