Bradley D Preston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11989939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high-resolution landscape of mutations in the <i>BCL6</i> super-enhancer in normal human B cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24779-24785.	7.1	17
2	DNA Replication Error-Induced Extinction of Diploid Yeast. Genetics, 2014, 196, 677-691.	2.9	45
3	Emergence of DNA Polymerase ε Antimutators That Escape Error-Induced Extinction in Yeast. Genetics, 2013, 193, 751-770.	2.9	41
4	Decoding cell lineage from acquired mutations using arbitrary deep sequencing. Nature Methods, 2012, 9, 78-80.	19.0	39
5	Antimutator variants of DNA polymerases. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 548-570.	5.2	24
6	Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast. PLoS Genetics, 2011, 7, e1002282.	3.5	64
7	A random mutation capture assay to detect genomic point mutations in mouse tissue. Nucleic Acids Research, 2011, 39, e73-e73.	14.5	15
8	DNA replication fidelity and cancer. Seminars in Cancer Biology, 2010, 20, 281-293.	9.6	131
9	Divergent cellular phenotypes of human and mouse cells lacking the Werner syndrome RecQ helicase. DNA Repair, 2010, 9, 11-22.	2.8	9
10	Case Series. Toxicologic Pathology, 2010, 38, 476-485.	1.8	17
11	DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17101-17104.	7.1	200
12	Antiretroviral Drug Resistance in HIVâ€2: Three Amino Acid Changes Are Sufficient for Classwide Nucleoside Analogue Resistance. Journal of Infectious Diseases, 2009, 199, 1323-1326.	4.0	63
13	Human Immunodeficiency Virus Types 1 and 2 Exhibit Comparable Sensitivities to Zidovudine and Other Nucleoside Analog Inhibitors In Vitro. Antimicrobial Agents and Chemotherapy, 2008, 52, 329-332.	3.2	34
14	Mutation at the Polymerase Active Site of Mouse DNA Polymerase δIncreases Genomic Instability and Accelerates Tumorigenesis. Molecular and Cellular Biology, 2007, 27, 7669-7682.	2.3	98
15	DNA polymerase δ-dependent repair of DNA single strand breaks containing 3′-end proximal lesions. Nucleic Acids Research, 2007, 35, 1054-1063.	14.5	20
16	DNA Replication Fidelity: Proofreading in Trans. Current Biology, 2006, 16, R209-R211.	3.9	19
17	Hypersusceptibility to Substrate Analogs Conferred by Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase. Journal of Virology, 2006, 80, 7169-7178.	3.4	22
18	Structural Determinants of Slippage-mediated Mutations by Human Immunodeficiency Virus Type 1 Reverse Transcriptase. Journal of Biological Chemistry, 2006, 281, 7421-7428.	3.4	21

BRADLEY D PRESTON

#	Article	IF	CITATIONS
19	Mutator Phenotypes Caused by Substitution at a Conserved Motif A Residue in Eukaryotic DNA Polymerase Ĩ´. Journal of Biological Chemistry, 2006, 281, 4486-4494.	3.4	68
20	Lethal mutagenesis of HIV. Virus Research, 2005, 107, 215-228.	2.2	55
21	Purifying Selection Masks the Mutational Flexibility of HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2004, 279, 26726-26734.	3.4	15
22	Incorporation of Uracil into Minus Strand DNA Affects the Specificity of Plus Strand Synthesis Initiation during Lentiviral Reverse Transcription. Journal of Biological Chemistry, 2003, 278, 7902-7909.	3.4	73
23	High incidence of epithelial cancers in mice deficient for DNA polymerase δ proofreading. Proceedings of the United States of America, 2002, 99, 15560-15565.	7.1	154
24	Mutational Analysis of HIV-1 Long Terminal Repeats to Explore the Relative Contribution of Reverse Transcriptase and RNA Polymerase II to Viral Mutagenesis. Journal of Biological Chemistry, 2002, 277, 38053-38061.	3.4	74
25	Human Immunodeficiency Virus Type 1 Recombination: Rate, Fidelity, and Putative Hot Spots. Journal of Virology, 2002, 76, 11273-11282.	3.4	226
26	Defective DNA polymerase-δ proofreading causes cancer susceptibility in mice. Nature Medicine, 2001, 7, 638-639.	30.7	155
27	Transduction of Cellular Sequence by a Human Immunodeficiency Virus Type 1-Derived Vector. Journal of Virology, 2001, 75, 11902-11906.	3.4	11
28	Site-specific Incorporation of Nucleoside Analogs by HIV-1 Reverse Transcriptase and the Template Grip Mutant P157S. Journal of Biological Chemistry, 2000, 275, 359-366.	3.4	30
29	High Rate of Recombination throughout the Human Immunodeficiency Virus Type 1 Genome. Journal of Virology, 2000, 74, 1234-1240.	3.4	323
30	A New Point Mutation (P157S) in the Reverse Transcriptase of Human Immunodeficiency Virus Type 1 Confers Low-Level Resistance to (â^')-β-2′,3′-Dideoxy-3′-Thiacytidine. Antimicrobial Agents and Chemotherapy, 1999, 43, 2077-2080.	3.2	12
31	Mouse DNA polymerase ε gene (Pole) maps to Chromosome 5. Mammalian Genome, 1998, 9, 91-92.	2.2	3
32	Mouse DNA polymerase δgene (Pold1) maps to Chromosome 7. Mammalian Genome, 1998, 9, 92-93.	2.2	4
33	The Nature of Human Immunodeficiency Virus Type 1 Strand Transfers. Journal of Biological Chemistry, 1998, 273, 28384-28391.	3.4	80
34	A Novel Point Mutation at Position 156 of Reverse Transcriptase from Feline Immunodeficiency Virus Confers Resistance to the Combination of (â^')-β-2′,3′-Dideoxy-3′-Thiacytidine and 3′-Azido-3′-Dec Journal of Virology, 1998, 72, 2335-2340.	oxy ah ymid	ine26
35	Increased Activity and Fidelity of DNA Polymerase Î ² on Single-nucleotide Gapped DNA. Journal of Biological Chemistry, 1997, 272, 27501-27504.	3.4	100
36	Effect of Human Immunodeficiency Virus Type 1 (HIV-1) Nucleocapsid Protein on HIV-1 Reverse Transcriptase Activityin Vitroâ€. Biochemistry, 1996, 35, 132-143.	2.5	126

BRADLEY D PRESTON

#	Article	IF	CITATIONS
37	Mechanisms of retroviral mutation. Trends in Microbiology, 1996, 4, 16-21.	7.7	136
38	Inhibition of reverse transcriptase from feline immunodeficiency virus by analogs of 2′-deoxyadenosine-5′-triphosphate. Biochemical Pharmacology, 1992, 44, 1375-1381.	4.4	31
39	The activities of 2,2′,5,5′-tetrachlorobiphenyl, its 3,4-oxide metabolite, and 2,2′,4,4′-tetrachlorobipher tumor induction and promotion assays. Carcinogenesis, 1985, 6, 451-453.	nyl in 2.8	24
40	Reactions of 2,2′,5,5′-tetrachlorobiphenyl 3,4-oxide with methionine, cysteine and glutathione in relation to the formation of methylthio-metabolites of 2,2′,5,5′-tetrachlorobiphenyl in the rat and mouse. Chemico-Biological Interactions, 1984, 50, 289-312.	4.0	54
41	Direct evidence that an arene oxide is a metabolic intermediate of 2,2′,5,5′-tetrachlorobiphenyl. Biochemical and Biophysical Research Communications, 1979, 91, 475-483.	2.1	33