Vikram Jayaram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11989476/publications.pdf

Version: 2024-02-01

		331670	395702
76	1,339	21	33
papers	citations	h-index	g-index
77	77	77	1058
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Small-Scale Mechanical Testing. Annual Review of Materials Research, 2022, 52, 473-523.	9.3	8
2	Co-fired anode-supported solid oxide fuel cell for internal reforming of hydrocarbon fuel. Energy, Ecology and Environment, 2021, 6, 55-68.	3.9	4
3	Creep Micromechanics in Meso-Length Scale Samples. Acta Materialia, 2021, 205, 116535.	7.9	5
4	Reactive hot pressing of TiC 0.5 ceramic at low applied pressure with 1 wt% Ni additive. Journal of the American Ceramic Society, 2021, 104, 5461-5466.	3.8	1
5	Effect of microstructure on fracture behavior of freestanding plasma sprayed 7 wt.% Y2O3 stabilized ZrO2. Journal of the European Ceramic Society, 2021, 41, 4294-4301.	5.7	9
6	Effect of addition of Pt, Pd and Ir to \hat{l}^2 -NiAl-bond coat on oxidation resistance and growth of interdiffusion zone. Surface and Coatings Technology, 2021, 426, 127766.	4.8	12
7	Fatigue behavior of a freestanding Pt-aluminide (PtAl) bond coat at ambient temperature. Surface and Coatings Technology, 2021, 427, 127787.	4.8	6
8	Crack velocity measurements through continuous stiffness monitoring of cyclically loaded notched micro-beams of thin graded Pt–Ni-Al bond coats. International Journal of Fracture, 2021, 227, 15-37.	2.2	1
9	Lowâ€temperature stiffening of air plasmaâ€sprayed 7Âwt% Y 2 O 3 â€stabilized ZrO 2. Journal of the American Ceramic Society, 2020, 103, 2076-2089.	3.8	11
10	The edge-notched clamped beam bend specimen as a fracture toughness test geometry. Theoretical and Applied Fracture Mechanics, 2020, 105, 102409.	4.7	13
11	Customized High-Temperature Bending with DIC for High-Throughput Determination of Creep Parameters: Technique, Instrumentation, and Optimization. Jom, 2020, 72, 4522-4538.	1.9	8
12	Hysteretic and time dependent deformation of plasma sprayed zirconia ceramics. Acta Materialia, 2020, 194, 394-402.	7.9	7
13	Microstructural equivalence between bending and uniaxial creep. Scripta Materialia, 2020, 186, 99-103.	5.2	11
14	High Throughput Determination of Creep Parameters Using Cantilever Bending: Part II - Primary and Steady-State through Uniaxial Equivalency. Journal of Materials Research, 2020, 35, 362-371.	2.6	9
15	High Throughput Determination of Creep Parameters Using Cantilever Bending: Part I - Steady-State. Journal of Materials Research, 2020, 35, 353-361.	2.6	10
16	Diffusion, defects and understanding the growth of a multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy. Acta Materialia, 2020, 195, 35-49.	7.9	31
17	Creep of Metallic Materials in Bending. Jom, 2019, 71, 3565-3583.	1.9	12
18	Application of bending creep for examining effect of service conditions on creep response of steel. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138398.	5.6	7

#	Article	lF	Citations
19	Stiffness based technique to probe cyclic damage accumulation in micro-structurally graded bond coats viaÂmicro-beam bending tests. Philosophical Magazine, 2019, 99, 2016-2050.	1.6	5
20	Effect of Humidity on Wear of TiN Coatings: Role of Capillary Condensation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6084-6092.	2.2	5
21	Co–Cu–YSZ–GDC as an anode material for internal reforming SOFC?. Nanomaterials and Energy, 2018, 7, 44-51.	0.2	1
22	Effect of microstructure on the hardness and dry sliding behavior of electroless Ni–B coating. Materialia, 2018, 4, 47-64.	2.7	28
23	Characterization of Thermal Stability and High-Temperature Tribological Behavior of Electroless Ni-B Coating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3217-3236.	2.2	21
24	On the Low Temperature Densification of Reactively Hot Pressed Non-Stoichiometric ZrC and (Zr,Ti)C. Materials Today: Proceedings, 2016, 3, 3077-3085.	1.8	5
25	Effect of applied pressure on densification of monolithic ZrCxceramic by reactive hot pressing. Journal of Materials Research, 2016, 31, 506-515.	2.6	10
26	Fracture Testing at Small-Length Scales: From Plasticity in Si to Brittleness in Pt. Jom, 2016, 68, 94-108.	1.9	39
27	Computational modeling of reactive hot pressing of zirconium carbide. Journal of Materials Research, 2015, 30, 1876-1886.	2.6	16
28	In-situ study of microscale fracture of diffusion aluminide bond coats: Effect of platinum. Journal of Materials Research, 2015, 30, 3343-3353.	2.6	14
29	Optimization of clamped beam geometry for fracture toughness testing of micron-scale samples. Philosophical Magazine, 2015, 95, 1945-1966.	1.6	28
30	Effect of Zirconium on the Densification of Reactively Hotâ€Pressed Zirconium Carbide. Journal of the American Ceramic Society, 2014, 97, 3092-3102.	3.8	17
31	Total internal reflection Raman spectroscopy of poly(alpha-olefin) oils in a lubricated contact. RSC Advances, 2014, 4, 22205-22213.	3. 6	14
32	Crack stability in edge-notched clamped beam specimens: modeling and experiments. International Journal of Fracture, 2014, 188, 213-228.	2.2	47
33	Role of interface curvature on stress distribution under indentation for ZrN/Zr multilayer coating. Thin Solid Films, 2014, 571, 283-289.	1.8	11
34	Metastable Phase Selection and Low-Temperature Plasticity in Chemically Synthesized Amorphous Al2O3â \in "Y2O3., 2014, , 115-151.		0
35	Densification mechanisms during hot pressing of ZrB2–20vol.% SiC composite. Scripta Materialia, 2013, 69, 370-373.	5.2	42
36	Reactive hot pressing of Ti–B–C and Ti–C at 1200°C. Ceramics International, 2013, 39, 5955-5961.	4.8	10

#	Article	lF	Citations
37	Total internal reflection (TIR) Raman tribometer: a new tool for in situ study of friction-induced material transfer. RSC Advances, 2013, 3, 5401.	3.6	22
38	Heat conduction mechanisms in hot pressed ZrB2 and ZrB2–SiC composites. Journal of the European Ceramic Society, 2013, 33, 1615-1624.	5.7	46
39	Detailed investigation of contact deformation in ZrN/Zr multiplayer—understanding the role of volume fraction, bilayer spacing, and morphology of interfaces. Journal of Materials Research, 2013, 28, 3146-3156.	2.6	8
40	Reactive Pulsed Laser Deposition of Titanium Nitride Thin Films: Effect of Reactive Gas Pressure on the Structure, Composition, and Properties. Journal of Materials, 2013, 2013, 1-5.	0.1	6
41	Processing of Ultra-High Temperature Ceramics for Hostile Environments. , 2013, , 100-124.		0
42	A new method for fracture toughness determination of graded (Pt,Ni)Al bond coats by microbeam bend tests. Philosophical Magazine, 2012, 92, 3326-3345.	1.6	53
43	Strength of hot pressed ZrB2–SiC composite after exposure to high temperatures (1000–1700 °C). Journal of the European Ceramic Society, 2012, 32, 4455-4467.	5.7	46
44	Synthesis and characterization of nickel/barium hexa-aluminate composite coatings. Bulletin of Materials Science, 2012, 35, 977-988.	1.7	0
45	Residual strength of hot pressed zirconium diboride (ZrB2) after exposure to high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 535, 189-196.	5.6	19
46	The influence of Zr layer thickness on contact deformation and fracture in a ZrN–Zr multilayer coating. Journal of Materials Science, 2012, 47, 1621-1630.	3.7	14
47	Characterization of phase transformation behaviour and microstructural development of electroless Ni–B coating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8269-8276.	5.6	61
48	Severe wear of a near eutectic aluminium–silicon alloy. Acta Materialia, 2011, 59, 6069-6082.	7.9	33
49	Deformation and structural densification in Al2O3–Y2O3 glass. Acta Materialia, 2011, 59, 82-92.	7.9	17
50	Deposition of ZnO Films by Combustion Flame Pyrolysis of Solution Precursors. International Journal of Applied Ceramic Technology, 2010, 7, 482-492.	2.1	0
51	Reactive Pulsed Laser Deposition of titanium nitride thin film: Optimization of process parameters using Secondary Ion Mass Spectrometry. Applied Surface Science, 2010, 256, 3077-3080.	6.1	5
52	Fabrication and mechanisms of densification of ZrB2-based ultra high temperature ceramics by reactive hot pressing. Journal of the European Ceramic Society, 2010, 30, 129-138.	5.7	55
53	Reactive hot pressing of ZrB2–ZrCx ultra-high temperature ceramic composites with the addition of SiC particulate. Journal of the European Ceramic Society, 2010, 30, 3263-3266.	5.7	18
54	Pressure and thermally induced stages of wear in dry sliding of a steel ball against an aluminium–silicon alloy flat. Wear, 2010, 268, 1080-1090.	3.1	18

#	Article	IF	CITATIONS
55	Synthesis and Densification of Monolithic Zirconium Carbide by Reactive Hot Pressing. Journal of the American Ceramic Society, 2010, 93, 1341-1346.	3.8	59
56	Lowâ€Temperature Densification of TiN–TiB ₂ Composites Through Reactive Hot Pressing with Excess Ti Additions. Journal of the American Ceramic Society, 2009, 92, 311-317.	3.8	6
57	Study of fracture behaviour of bond coats on nickel superalloy by three-point bending of microbeams. Surface and Coatings Technology, 2009, 204, 586-592.	4.8	6
58	Low-Temperature Processing of ZrB2-ZrC Composites by Reactive Hot Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1496-1505.	2.2	49
59	Kinetics of Pressureless Infiltration of Al-Mg Melts into Porous Alumina Preforms. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2008, 39, 108-115.	2.1	6
60	Crack growth resistance (R-curve) behaviour and thermo-physical properties of Al2O3 particle-reinforced AlN/Al matrix composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1038-1050.	7.6	7
61	Flow Kinetics in Porous Ceramics: Understanding with Nonâ€Uniform Capillary Models. Journal of the American Ceramic Society, 2007, 90, 3040-3046.	3 . 8	43
62	Synthesis of Bulk, Dense, Nanocrystalline Yttrium Aluminum Garnet from Amorphous Powders. Journal of the American Ceramic Society, 2007, 90, 3638-3641.	3.8	18
63	Low-Temperature High-Pressure Consolidation of Amorphous Al2O3-15 mol% Y2O3. Journal of the American Ceramic Society, 2005, 88, 2696-2701.	3.8	11
64	Reactive Hot Pressing of Titanium Nitride–Titanium Diboride Composites at Moderate Pressures and Temperatures. Journal of the American Ceramic Society, 2004, 87, 1872-1878.	3.8	22
65	Oxide films by combustion pyrolysis of solution precursors. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 359, 18-23.	5.6	8
66	Bulk, Dense, Nanocrystalline Yttrium Aluminum Garnet by Consolidation of Amorphous Powders at Low Temperatures and High Pressures. Journal of the American Ceramic Society, 2003, 86, 247-251.	3.8	21
67	Soft chemical routes to the synthesis of extended solid solutions of wurtzite ZnO–MO (M=Mg,Co,Ni). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 800-804.	5.6	40
68	Segregation in the MgO–MgAl2O4 system processed from nitrate precursors. Journal of Materials Research, 1999, 14, 3319-3327.	2.6	8
69	Dense Amorphous Zirconia–Alumina by Lowâ€Temperature Consolidation of Sprayâ€Pyrolyzed Powders. Journal of the American Ceramic Society, 1999, 82, 2613-2618.	3.8	28
70	Sliding Wear of Al2O3-SiC-(Al,Si) Composites against a Steel Counterface. Journal of the American Ceramic Society, 1997, 80, 219-224.	3.8	9
71	Effect of liquid precursor pyrolysis on phase selection in the MgO-MgAl2O4 system. Materials Science & Science & Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 930-937.	5.6	6
72	Growth of Al2O3Al composites from Alî—¸Zn alloys. Acta Materialia, 1996, 44, 819-829.	7.9	25

#	Article	IF	CITATIONS
73	Microstructure Control and Wear of Al2O3â€SiCâ€(Al, Si) Composites Made by Melt Oxidation. Journal of the American Ceramic Society, 1996, 79, 770-772.	3.8	11
74	Development of Nano-Composite Microstructures in ZrO2-Al2O3 via the Solution Precursor Method. Journal of the American Ceramic Society, 1995, 78, 1489-1494.	3.8	55
75	Effect of Phases on the Frictional Properties of Electroless Ni-B Nano-Composite Coating. Advances in Science and Technology, 0, , .	0.2	1
76	Damage accumulation in plasma sprayed zirconia under cyclic loading. Journal of the American Ceramic Society, 0, , .	3.8	1