Anna S Gukovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11986554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rab9 Mediates Pancreatic Autophagy Switch From Canonical to Noncanonical, Aggravating Experimental Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 599-622.	4.5	5
2	Dysregulation of mannose-6-phosphate–dependent cholesterol homeostasis in acinar cells mediates pancreatitis. Journal of Clinical Investigation, 2021, 131, .	8.2	9
3	Early trypsin activation develops independently of autophagy in caerulein-induced pancreatitis in mice. Cellular and Molecular Life Sciences, 2020, 77, 1811-1825.	5.4	13
4	Transgenic expression of GFP-LC3 perturbs autophagy in exocrine pancreas and acute pancreatitis responses in mice. Autophagy, 2020, 16, 2084-2097.	9.1	45
5	Acute Pancreatitis: A Multifaceted Set of Organelle and CellularÂInteractions. Gastroenterology, 2019, 156, 1941-1950.	1.3	134
6	Recent Insights Into the Pathogenic Mechanism of Pancreatitis. Pancreas, 2019, 48, 459-470.	1.1	46
7	Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology, 2018, 154, 704-718.e10.	1.3	168
8	Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology, 2018, 154, 689-703.	1.3	237
9	Acute acinar pancreatitis blocks vesicle-associated membrane protein 8 (VAMP8)-dependent secretion, resulting in intracellular trypsin accumulation. Journal of Biological Chemistry, 2017, 292, 7828-7839.	3.4	16
10	Analysis of N- and O-Glycosylation of Lysosomal Glycoproteins. Methods in Molecular Biology, 2017, 1594, 35-42.	0.9	9
11	Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis. Gastroenterology, 2017, 153, 1212-1226.	1.3	213
12	Human Pancreatic Acinar Cells. American Journal of Pathology, 2017, 187, 2726-2743.	3.8	69
13	Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS ONE, 2017, 12, e0184455.	2.5	107
14	Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Scientific Reports, 2016, 6, 37200.	3.3	11
15	New insights into the pathways initiating and driving pancreatitis. Current Opinion in Gastroenterology, 2016, 32, 429-435.	2.3	55
16	Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut, 2016, 65, 1333-1346.	12.1	159
17	Lysosome-Associated Membrane Proteins (LAMP) Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 678-694.	4.5	95
18	Impaired Autophagy Triggers Chronic Pancreatitis: Lessons From Pancreas-Specific Atg5 Knockout Mice. Gastroenterology, 2015, 148, 501-505.	1.3	33

Αννά S Gukovskaya

#	Article	IF	CITATIONS
19	Effects of Oxidative Alcohol Metabolism on the Mitochondrial Permeability Transition Pore and Necrosis in a Mouse Model of Alcoholic Pancreatitis. Gastroenterology, 2013, 144, 437-446.e6.	1.3	98
20	Akt Kinase Mediates the Prosurvival Effect of Smoking Compounds in Pancreatic Ductal Cells. Pancreas, 2013, 42, 655-662.	1.1	16
21	Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice. Journal of Clinical Investigation, 2013, 123, 2231-2243.	8.2	103
22	Autophagy and pancreatitis. American Journal of Physiology - Renal Physiology, 2012, 303, G993-G1003.	3.4	112
23	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
24	The Phosphatase PHLPP1 Regulates Akt2, Promotes Pancreatic Cancer Cell Death, and Inhibits Tumor Formation. Gastroenterology, 2012, 142, 377-387.e5.	1.3	81
25	The burning question: Why is smoking a risk factor for pancreatic cancer?. Pancreatology, 2012, 12, 344-349.	1.1	56
26	Impaired autophagy and organellar dysfunction in pancreatitis. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 27-32.	2.8	84
27	Organellar Dysfunction in the Pathogenesis of Pancreatitis. Antioxidants and Redox Signaling, 2011, 15, 2699-2710.	5.4	67
28	Which Way to Die: the Regulation of Acinar Cell Death in Pancreatitis by Mitochondria, Calcium, and Reactive Oxygen Species. Gastroenterology, 2011, 140, 1876-1880.	1.3	40
29	Investigating the Pathobiology of Alcoholic Pancreatitis. Alcoholism: Clinical and Experimental Research, 2011, 35, 830-837.	2.4	50
30	NADPH Oxidase Activation in Pancreatic Cancer Cells Is Mediated through Akt-dependent Up-regulation of p22. Journal of Biological Chemistry, 2011, 286, 7779-7787.	3.4	53
31	Rottlerin stimulates apoptosis in pancreatic cancer cells through interactions with proteins of the Bcl-2 family. American Journal of Physiology - Renal Physiology, 2010, 298, G63-G73.	3.4	35
32	Inhibitors of Bcl-2 protein family deplete ER Ca2+ stores in pancreatic acinar cells. Pflugers Archiv European Journal of Physiology, 2010, 460, 891-900.	2.8	19
33	Inflammatory cells regulate p53 and caspases in acute pancreatitis. American Journal of Physiology - Renal Physiology, 2010, 298, G92-G100.	3.4	24
34	Prosurvival Bcl-2 proteins stabilize pancreatic mitochondria and protect against necrosis in experimental pancreatitis. Experimental Cell Research, 2009, 315, 1975-1989.	2.6	68
35	Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. Journal of Clinical Investigation, 2009, 119, 3340-55.	8.2	221
36	Mitochondrial mechanisms of death responses in pancreatitis. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, S25-S30.	2.8	32

Αννά S Gukovskaya

#	Article	IF	CITATIONS
37	Ellagic acid induces apoptosis through inhibition of nuclear factor kB in pancreatic cancer cells. World Journal of Gastroenterology, 2008, 14, 3672.	3.3	124
38	Insulin-like Growth Factor-I Receptor Mediates the Prosurvival Effect of Fibronectin. Journal of Biological Chemistry, 2007, 282, 26646-26655.	3.4	35
39	NADPH Oxidase Promotes Pancreatic Cancer Cell Survival via Inhibiting JAK2 Dephosphorylation by Tyrosine Phosphatases. Gastroenterology, 2007, 133, 1637-1648.	1.3	151
40	Pancreas Recovery Following Cerulein-Induced Pancreatitis Is Impaired in Plasminogen-Deficient Mice. Gastroenterology, 2006, 131, 885-899.	1.3	48
41	Ethanol Feeding Alters Death Signaling in the Pancreas. Pancreas, 2006, 32, 351-359.	1.1	36
42	Cell death in pancreatitis: Effects of alcohol. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, S10-3.	2.8	36
43	Cell Death in Pancreatitis. Journal of Biological Chemistry, 2006, 281, 3370-3381.	3.4	246
44	Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase. American Journal of Physiology - Renal Physiology, 2005, 289, G1137-G1147.	3.4	127
45	Reactive Oxygen Species Produced by NAD(P)H Oxidase Inhibit Apoptosis in Pancreatic Cancer Cells. Journal of Biological Chemistry, 2004, 279, 34643-34654.	3.4	321
46	Phosphatidylinositide 3-kinase γ regulates key pathologic responses to cholecystokinin in pancreatic acinar cells. Gastroenterology, 2004, 126, 554-566.	1.3	79
47	Cell death pathways in pancreatitis and pancreatic cancer. Pancreatology, 2004, 4, 567-586.	1.1	138
48	Non-mitochondrial NAD(P)H oxidase mediates growth factor-induced ROS production and suppression of apoptosis in pancreatic cancer cells. Gastroenterology, 2003, 124, A290.	1.3	1
49	Extracellular matrix proteins protect pancreatic cancer cells from death via mitochondrial and nonmitochondrial pathways. Gastroenterology, 2003, 125, 1188-1202.	1.3	75
50	Caspases and poly(ADP-ribose) polymerase (PARP) regulate the balance between apoptosis and necrosis in experimental pancreatitis. Gastroenterology, 2003, 124, A502.	1.3	3
51	Prevention of Metastatic Pancreatic Cancer Growth in vivo by Induction of Apoptosis with Genistein, a Naturally Occurring Isoflavonoid. Pancreas, 2003, 26, 264-273.	1.1	63
52	Cholecystokinin Induces Caspase Activation and Mitochondrial Dysfunction in Pancreatic Acinar Cells. Journal of Biological Chemistry, 2002, 277, 22595-22604.	3.4	124
53	Ethanol metabolism and transcription factor activation in pancreatic acinar cells in rats. Gastroenterology, 2002, 122, 106-118.	1.3	174
54	Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology, 2002, 122, 974-984.	1.3	243

Αννά S Gukovskaya

#	Article	IF	CITATIONS
55	Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. International Journal of Cancer, 2002, 98, 761-769.	5.1	264
56	Localized pancreatic NF-κB activation and inflammatory response in taurocholate-induced pancreatitis. American Journal of Physiology - Renal Physiology, 2001, 280, G1197-G1208.	3.4	135
57	Activation of pancreatic acinar cells on isolation from tissue: cytokine upregulation via p38 MAP kinase. American Journal of Physiology - Cell Physiology, 2000, 279, C1993-C2003.	4.6	127
58	Endoplasmic reticulum Ca ²⁺ -ATPase inhibitors stimulate membrane guanylate cyclase in pancreatic acinar cells. American Journal of Physiology - Cell Physiology, 2000, 278, C363-C371.	4.6	5
59	Ethanol diet increases the sensitivity of rats to pancreatitis induced by cholecystokinin octapeptide. Gastroenterology, 1999, 117, 706-716.	1.3	209
60	Early NF-κB activation is associated with hormone-induced pancreatitis. American Journal of Physiology - Renal Physiology, 1998, 275, G1402-G1414.	3.4	225