List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11985865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-3 Fatty Acids as Secondary Prevention against Cardiovascular Events in Patients Who Undergo Chronic Hemodialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2006, 1, 780-786.	4.5	132
2	Diagnostic Performance of Coronary CTÂAngiography and Myocardial PerfusionÂImaging in Kidney Transplantation Candidates. JACC: Cardiovascular Imaging, 2015, 8, 553-562.	5.3	85
3	Growth Differentiation Factor 15 Provides Prognostic Information Superior to Established Cardiovascular and Inflammatory Biomarkers in Unselected Patients Hospitalized With COVID-19. Circulation, 2020, 142, 2128-2137.	1.6	85
4	The effect of n-3 fatty acids on plasma lipids and lipoproteins and blood pressure in patients with CRF. American Journal of Kidney Diseases, 2004, 44, 77-83.	1.9	69
5	Severe Acute Respiratory Syndrome Coronavirus 2 RNA in Plasma Is Associated With Intensive Care Unit Admission and Mortality in Patients Hospitalized With Coronavirus Disease 2019. Clinical Infectious Diseases, 2021, 73, e799-e802.	5.8	62
6	The effect of n-3 fatty acids on lipids and lipoproteins in patients treated with chronic haemodialysis: a randomized placebo-controlled intervention study. Nephrology Dialysis Transplantation, 2008, 23, 2918-2924.	0.7	51
7	Marine n-3 Polyunsaturated Fatty Acids inÂPatients With End-stage Renal Failure andÂin Subjects Without Kidney Disease: AÂComparative Study. , 2011, 21, 169-175.		49
8	The Association between Marine n-3 Polyunsaturated Fatty Acid Levels and Survival after Renal Transplantation. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1246-1256.	4.5	39
9	Prognostic Value of Risk Factors, CalciumÂScore, Coronary CTA, MyocardialÂPerfusion Imaging, and InvasiveÂCoronary Angiography in KidneyÂTransplantation Candidates. JACC: Cardiovascular Imaging, 2018, 11, 842-854.	5.3	39
10	Osteoprotegerin as a predictor of renal and cardiovascular outcomes in renal transplant recipients: follow-up data from the ALERT study. Nephrology Dialysis Transplantation, 2012, 27, 2571-2575.	0.7	35
11	Bone turnover markers are associated with bone density, but not with fracture in end stage kidney disease: a cross-sectional study. BMC Nephrology, 2017, 18, 284.	1.8	33
12	Prevention of cardiovascular disease after renal transplantation. Current Opinion in Organ Transplantation, 2012, Publish Ahead of Print, 393-400.	1.6	28
13	The Effect of n-3 Fatty Acids on Heart Rate Variability in Patients Treated With Chronic Hemodialysis. , 2007, 17, 243-249.		27
14	Marine <i>n</i> -3 fatty acids, atrial fibrillation and QT interval in haemodialysis patients. British Journal of Nutrition, 2012, 107, 903-909.	2.3	24
15	Established Cardiovascular Biomarkers Provide Limited Prognostic Information in Unselected Patients Hospitalized With COVID-19. Circulation, 2020, 142, 1878-1880.	1.6	24
16	The content of docosahexaenoic acid in serum phospholipid is inversely correlated with plasma homocysteine levels in patients with end-stage renal disease. Nutrition Research, 2010, 30, 535-540.	2.9	21
17	Plasma levels of marine n-3 polyunsaturated fatty acids and renal allograft survival. Nephrology Dialysis Transplantation, 2016, 31, 160-167.	0.7	17
18	Vertebral Bone Mineral Density Measured by Quantitative Computed Tomography With and Without a Calibration Phantom: A Comparison Between 2 Different Software Solutions. Journal of Clinical Densitometry, 2018, 21, 367-374.	1.2	16

#	Article	IF	CITATIONS
19	Effects of marine n-3 fatty acid supplementation in renal transplantation: A randomized controlled trial. American Journal of Transplantation, 2019, 19, 790-800.	4.7	16
20	The Effect of n-3 Fatty Acids on Small Dense Low-Density Lipoproteins in Patients With End-Stage Renal Disease: A Randomized Placebo-Controlled Intervention Study. , 2015, 25, 376-380.		12
21	<i>Giardia lamblia</i> infection after pancreas-kidney transplantation. BMJ Case Reports, 2016, 2016, bcr2015211515.	0.5	11
22	Coronary Calcium Score May Replace Cardiovascular Risk Factors as Primary Risk Stratification Tool Before Kidney Transplantation. Transplantation, 2016, 100, 2177-2187.	1.0	11
23	Staphylococcus aureus Bacteremia Risk in Hemodialysis Patients Using the Buttonhole Cannulation Technique: A Prospective Multicenter Study. Kidney Medicine, 2019, 1, 263-270.	2.0	11
24	A Fully Automated Method for the Determination of Serum Belatacept and Its Application in a Pharmacokinetic Investigation in Renal Transplant Recipients. Therapeutic Drug Monitoring, 2019, 41, 11-18.	2.0	11
25	Cancer risk and mortality after kidney transplantation: a population-based study on differences between Danish centres using standard immunosuppression with and without glucocorticoids. Nephrology Dialysis Transplantation, 2016, 31, 2149-2156.	0.7	10
26	Association between circulating proprotein convertase subtilisin/kexin type 9 levels and prognosis in patients with severe chronic kidney disease. Nephrology Dialysis Transplantation, 2020, 35, 632-639.	0.7	10
27	Bioavailable Testosterone Is Positively Associated With Bone Mineral Density in Male Kidney Transplantation Candidates. Kidney International Reports, 2018, 3, 661-670.	0.8	9
28	Soluble ST2 concentrations associate with in-hospital mortality and need for mechanical ventilation in unselected patients with COVID-19. Open Heart, 2021, 8, e001884.	2.3	9
29	Plasma Levels of Marine n-3 Fatty Acids Are Inversely Correlated With Proinflammatory Markers sTNFR1 and IL-6 in Renal Transplant Recipients. , 2017, 27, 161-168.		8
30	n-3 polyunsaturated fatty acids, lipids and lipoproteins in end-stage renal disease. Clinical Lipidology, 2011, 6, 563-576.	0.4	7
31	Effect of Intravenous Contrast on Volumetric Bone Mineral Density in Patients with Chronic Kidney Disease. Journal of Clinical Densitometry, 2016, 19, 423-429.	1.2	7
32	Marine n-3 polyunsaturated fatty acids affect the blood pressure control in patients with newly diagnosed hypertension – a 1-year follow-up study. Nutrition Research, 2017, 38, 71-78.	2.9	7
33	Plasma n-3 Polyunsaturated Fatty Acids and Bone Mineral Density in Renal Transplant Recipients. , 2016, 26, 196-203.		6
34	Development of Kidney Transplant Fibrosis Is Inversely Associated With Plasma Marine Fatty Acid Level. , 2018, 28, 118-124.		6
35	Plasma linoleic acid levels and cardiovascular risk factors: results from the Norwegian ACE 1950 Study. European Journal of Clinical Nutrition, 2020, 74, 1707-1717.	2.9	6
36	Plasma Trans Fatty Acid Levels, Cardiovascular Risk Factors and Lifestyle: Results from the Akershus Cardiac Examination 1950 Study. Nutrients, 2020, 12, 1419.	4.1	6

#	Article	IF	CITATIONS
37	Marine n-3 Polyunsaturated Fatty Acids and Bone Mineral Density in Kidney Transplant Recipients: A Randomized, Placebo-Controlled Trial. Nutrients, 2021, 13, 2361.	4.1	6
38	Associations of Serum Uromodulin and Urinary Epidermal Growth Factor with Measured Glomerular Filtration Rate and Interstitial Fibrosis in Kidney Transplantation. American Journal of Nephrology, 2022, 53, 108-117.	3.1	6
39	Aortic Calcification Affects Noninvasive Estimates of Central Blood Pressure in Patients with Severe Chronic Kidney Disease. Kidney and Blood Pressure Research, 2019, 44, 704-714.	2.0	5
40	The Effect of Marine n-3 Polyunsaturated Fatty Acids on Heart Rate Variability in Renal Transplant Recipients: A Randomized Controlled Trial. Nutrients, 2019, 11, 2847.	4.1	5
41	Plasma marine n-3 polyunsaturated fatty acids and cardiovascular risk factors: data from the ACE 1950 study. European Journal of Nutrition, 2020, 59, 1505-1515.	3.9	5
42	Marine n-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The Omega-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Medicine, 2021, 3, 1041-1049.	2.0	5
43	The effect of n-3 fatty acids on levels of methylarginines in patients with end-stage renal disease. Journal of Nephrology, 2010, 23, 459-64.	2.0	5
44	Atrial function, atrial volume and cardiovascular clinical outcomes in patients with end-stage renal disease – A study of cardiac computed tomography. Journal of Cardiovascular Computed Tomography, 2017, 11, 389-396.	1.3	4
45	Cuff inflation during ambulatory blood pressure monitoring and heart rate. Integrated Blood Pressure Control, 2008, Volume 1, 15-19.	1.2	3
46	Prognostic value of computed tomography derived fractional flow reserve for predicting cardiac events and mortality in kidney transplant candidates. Journal of Cardiovascular Computed Tomography, 2022, 16, 442-451.	1.3	3
47	n-3 Polyunsaturated Fatty Acids for the Management of Patients With Chronic Kidney Disease. , 2017, 27, 147-150.		2
48	Trans-fatty Acids and Survival in Renal Transplantation. , 2019, 29, 169-180.		2
49	Omega-3 Polyunsaturated Fatty Acids and Clinical Trials. American Journal of Kidney Diseases, 2011, 57, 352.	1.9	1
50	Long chain n-3 polyunsaturated fatty acids and vascular function in patients with chronic kidney disease and healthy subjects: a cross-sectional and comparative study. BMC Nephrology, 2016, 17, 184.	1.8	1
51	Plasma n-6 Polyunsaturated Fatty Acid Levels and Survival in Renal Transplantation. , 2018, 28, 333-339.		1
52	Marine n-3 fatty acid consumption in a Norwegian renal transplant cohort: Comparison of a food frequency questionnaire with plasma phospholipid marine n-3 levels. PLoS ONE, 2020, 15, e0244089.	2.5	1
53	The Authors Reply:. JACC: Cardiovascular Imaging, 2016, 9, 329-330.	5.3	0
54	Haptoglobin 2-2 Genotype, Patient, and Graft Survival in Renal Transplant Recipients. Progress in Transplantation, 2017, 27, 386-391.	0.7	0

#	Article	IF	CITATIONS
55	SP755MARINE n-3 FATTY ACID SUPPLEMENTATION INCREASE TACROLIMUS EXPOSURE IN RENAL TRANSPLANT RECIPIENTS. Nephrology Dialysis Transplantation, 2018, 33, i603-i603.	0.7	0
56	SP084ASSOCIATION BETWEEN ARTERIAL STIFFNESS AND HEART RATE VARIABILITY IN PATIENTS WITH NEWLY DIAGNOSED HYPERTENSION. Nephrology Dialysis Transplantation, 2018, 33, i373-i374.	0.7	0
57	The Authors Reply:. JACC: Cardiovascular Imaging, 2018, 11, 287.	5.3	0
58	SP736MARINE N-3 POLYUNSATURATED FATTY ACIDS AND BONE DENSITY IN KIDNEY TRANSPLANTATION: A DOUBLE-BLINDED, RANDOMIZED, PLACEBO-CONTROLLED TRIAL. Nephrology Dialysis Transplantation, 2018, 33, i596-i596.	0.7	0
59	SP744MARINE n-3 FATTY ACID SUPPLEMENTATION REDUCES PLASMA TRIGLYCERIDES & IMPROVES FLOW MEDIATED DILATATION IN RENAL TRANSPLANT RECIPIENTS. Nephrology Dialysis Transplantation, 2018, 33, i599-i599.	0.7	0
60	SP751MARINE n-3 FATTY ACID SUPPLEMENTATION REDUCES INFLAMMATION & PREVENTS RENAL GRAFT FIBROSIS. Nephrology Dialysis Transplantation, 2018, 33, i601-i601.	0.7	0
61	P0653THE USE OF URINARY EPIDERMAL GROWTH FACTOR FOR EVALUATION OF KIDNEY GRAFT FUNCTION. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
62	P0945STUDY PROTOCOL: ADIPOSE TISSUE CONTENT OF N-3 POLYUNSATURATED FATTY ACIDS AND THE RISK OF CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
63	P1679HYPOMAGNESAEMIA AND HYPERGLYCAEMIA AFTER KIDNEY TRANSPLANTATION. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
64	Multiplex proteomics as risk predictor of infection in patients treated with hemodialysis—A prospective multicenter study. Hemodialysis International, 2022, 26, 191-201.	0.9	0
65	Title is missing!. , 2020, 15, e0244089.		0
66	Title is missing!. , 2020, 15, e0244089.		0
67	Title is missing!. , 2020, 15, e0244089.		0
68	Title is missing!. , 2020, 15, e0244089.		0
69	MO952: Risk Factors of Post Transplantation Diabetes Mellitus After Kidney Transplantation. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0