List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11985024/publications.pdf Version: 2024-02-01

Lius M Mid

#	Article	IF	CITATIONS
1	A microdosimetric study at the cellular and intracellular level using a 3D realistic cell model. , 2022, ,		3
2	Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. International Journal of Biometeorology, 2021, 65, 59-67.	3.0	18
3	Electrophoresis-assisted accumulation of conductive nanoparticles for the enhancement of cell electropermeabilization. Bioelectrochemistry, 2021, 137, 107642.	4.6	4
4	Glossary on atmospheric electricity and its effects on biology. International Journal of Biometeorology, 2021, 65, 5-29.	3.0	9
5	BDNFâ€Gene Transfected Schwann Cellâ€Assisted Axonal Extension and Sprouting on New PLA–PPy Microfiber Substrates. Macromolecular Bioscience, 2021, 21, e2000391.	4.1	9
6	A Setup for Microscopic Studies of Ultrasounds Effects on Microliters Scale Samples: Analytical, Numerical and Experimental Characterization. Pharmaceutics, 2021, 13, 847.	4.5	1
7	Calcium Oscillations In Differentiating Mesenchymal Stem Cells: Analysis And Control Using Pulsed Electric Fields. , 2021, , .		Ο
8	Biological effects of ultrashort electric pulses in a Neuroblastoma cell line: the energy density role International Journal of Radiation Biology, 2021, , 1-40.	1.8	4
9	Successful Tumor Electrochemotherapy Using Sine Waves. IEEE Transactions on Biomedical Engineering, 2020, 67, 1040-1049.	4.2	19
10	GaN-Based Versatile Waveform Generator for Biomedical Applications of Electroporation. IEEE Access, 2020, 8, 97196-97203.	4.2	16
11	Monitoring the molecular composition of live cells exposed to electric pulses via label-free optical methods. Scientific Reports, 2020, 10, 10471.	3.3	6
12	Physiological changes may dominate the electrical properties of liver during reversible electroporation: Measurements and modelling. Bioelectrochemistry, 2020, 136, 107627.	4.6	3
13	Confocal Microscopy Improves 3D Microdosimetry Applied to Nanoporation Experiments Targeting Endoplasmic Reticulum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 552261.	4.1	12
14	Cell Electropermeabilisation Enhancement by Non-Thermal-Plasma-Treated PBS. Cancers, 2020, 12, 219.	3.7	44
15	A Subnanosecond Pulsed Electric Field System for Studying Cells Electropermeabilization. IEEE Transactions on Plasma Science, 2020, 48, 4242-4249.	1.3	7
16	Conductive nanoparticles improve cell electropermeabilization. Nanotechnology, 2019, 30, 495101.	2.6	12
17	Impact of the number of electric pulses on cell electrochemotherapy in vitro: Limits of linearity and saturation. Bioelectrochemistry, 2019, 129, 218-227.	4.6	17
18	Industrial Electronics for Biomedicine: A New Cancer Treatment Using Electroporation. IEEE Industrial Electronics Magazine, 2019, 13, 6-18.	2.6	23

#	Article	IF	CITATIONS
19	Sine wave electropermeabilization reveals the frequency-dependent response of the biological membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1022-1034.	2.6	24
20	A wide-band bio-chip for real-time optical detection of bioelectromagnetic interactions with cells. Scientific Reports, 2018, 8, 5044.	3.3	12
21	Updated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastases. Acta Oncolųgica, 2018, 57, 874-882.	1.8	256
22	Pyroelectricity as a possible mechanism for cell membrane permeabilization. Bioelectrochemistry, 2018, 119, 227-233.	4.6	11
23	Dynamical modeling of tissue electroporation. Bioelectrochemistry, 2018, 119, 98-110.	4.6	37
24	Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level. Bioelectrochemistry, 2018, 119, 76-83.	4.6	56
25	In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Research and Therapy, 2018, 9, 203.	5.5	116
26	In vitro analysis of various cell lines responses to electroporative electric pulses by means of electrical impedance spectroscopy. Biosensors and Bioelectronics, 2018, 117, 207-216.	10.1	18
27	Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: Quantitative Study with Calcium Ions. Scientific Reports, 2017, 7, 13079.	3.3	52
28	Comprehensive Characterization of the Interaction between Pulsed Electric Fields and Live Cells by Confocal Raman Microspectroscopy. Analytical Chemistry, 2017, 89, 10790-10797.	6.5	11
29	Demonstration of the Protein Involvement in Cell Electropermeabilization using Confocal Raman Microspectroscopy. Scientific Reports, 2017, 7, 40448.	3.3	27
30	Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields. Stem Cell Research and Therapy, 2017, 8, 91.	5.5	30
31	Biological Responses. , 2017, , 155-274.		3
32	Medical Applications. , 2017, , 275-388.		2
33	A Novel Spectroscopically Determined Pharmacodynamic Biomarker for Skin Toxicity in Cancer Patients Treated with Targeted Agents. Cancer Research, 2017, 77, 557-565.	0.9	10
34	Exploring the Applicability of Nano-Poration for Remote Control in Smart Drug Delivery Systems. Journal of Membrane Biology, 2017, 250, 31-40.	2.1	22
35	Technological and Theoretical Aspects for Testing Electroporation on Liposomes. BioMed Research International, 2017, 2017, 1-10.	1.9	17
36	Gallein, a Gβγ subunit signalling inhibitor, inhibits metastatic spread of tumour cells expressing OR51E2 and exposed to its odorant ligand. BMC Research Notes, 2017, 10, 541.	1.4	11

#	Article	IF	CITATIONS
37	Cell Membrane Electropulsation: Chemical Analysis of Cell Membrane Modifications and Associated Transport Mechanisms. Advances in Anatomy, Embryology and Cell Biology, 2017, 227, 59-71.	1.6	15
38	Structurally related odorant ligands of the olfactory receptor OR51E2 differentially promote metastasis emergence and tumor growth. Oncotarget, 2017, 8, 4330-4341.	1.8	20
39	Electric pulses: a flexible tool to manipulate cytosolic calcium concentrations and generate spontaneous-like calcium oscillations in mesenchymal stem cells. Scientific Reports, 2016, 6, 32331.	3.3	20
40	The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer and Metastasis Reviews, 2016, 35, 165-177.	5.9	98
41	Overcoming the Specific Toxicity of Large Plasmids Electrotransfer in Primary Cells In Vitro. Molecular Therapy - Nucleic Acids, 2016, 5, e291.	5.1	74
42	Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses. Scientific Reports, 2016, 6, 19957.	3.3	70
43	Intracellular Delivery of Bleomycin by Combined Application of Electroporation and Sonoporation in Vitro. Journal of Membrane Biology, 2016, 249, 677-689.	2.1	12
44	Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids. Journal of Membrane Biology, 2015, 248, 827-835.	2.1	42
45	Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes. Bioelectrochemistry, 2015, 105, 123-135.	4.6	25
46	Cell membrane permeabilization by 12-ns electric pulses: Not a purely dielectric, but a charge-dependent phenomenon. Bioelectrochemistry, 2015, 106, 369-378.	4.6	30
47	Optimization of a gene electrotransfer procedure for efficient intradermal immunization with an hTERT-based DNA vaccine in mice. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14045.	4.1	20
48	Promotion of Cancer Cell Invasiveness and Metastasis Emergence Caused by Olfactory Receptor Stimulation. PLoS ONE, 2014, 9, e85110.	2.5	109
49	The Culture of Cancer Cell Lines as Tumorspheres Does Not Systematically Result in Cancer Stem Cell Enrichment. PLoS ONE, 2014, 9, e89644.	2.5	61
50	Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. Oncolmmunology, 2014, 3, e28131.	4.6	160
51	Biochemical characterization of cell electropermeabilization using the Raman effect. , 2014, , .		Ο
52	Therapeutic effects of in vivo electroporation: Facilitating drug and gene delivery but not only…. , 2014, , .		0
53	Dual therapeutic benefit of electroporation-mediated DNA vaccination in vivo. Oncolmmunology, 2014, 3, e28540.	4.6	26
54	Lipid Peroxidation in Membranes: The Peroxyl Radical Does Not "Float― Journal of Physical Chemistry Letters, 2014, 5, 1653-1658.	4.6	67

#	Article	IF	CITATIONS
55	High-Yield Nontoxic Gene Transfer through Conjugation of the CM ₁₈ -Tat ₁₁ Chimeric Peptide with Nanosecond Electric Pulses. Molecular Pharmaceutics, 2014, 11, 2466-2474.	4.6	23
56	Electroporation-Based Gene Therapy: Recent Evolution in the Mechanism Description and Technology Developments. Methods in Molecular Biology, 2014, 1121, 3-23.	0.9	33
57	Gene Electrotransfer of Plasmid Antiangiogenic Metargidin Peptide (AMEP) in Disseminated Melanoma: Safety and Efficacy Results of a Phase I First-in-Man Study. Human Gene Therapy Clinical Development, 2013, 24, 99-107.	3.1	64
58	Robust, Efficient, and Practical Electrogene Transfer Method for Human Mesenchymal Stem Cells Using Square Electric Pulses. Human Gene Therapy Methods, 2013, 24, 289-297.	2.1	31
59	A new anti-tumor strategy based on in vivo tumstatin overexpression after plasmid electrotransfer in muscle. Biochemical and Biophysical Research Communications, 2013, 432, 549-552.	2.1	9
60	Increased Efficiency of Minicircles Versus Plasmids Under Gene Electrotransfer Suboptimal Conditions: An Influence of the Extracellular Matrix. , 2013, , 215-225.		4
61	Changes of cell electrical parameters induced by electroporation. A dielectrophoresis study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 365-372.	2.6	39
62	Nanopulses and their applications: Permeabilisation to bleomycin molecules by 10 ns duration electric pulses in a tumor model in vivo. , 2012, , .		0
63	The antitumor efficiency of combined electrochemotherapy and single dose irradiation on a breast cancer tumor model. Radiology and Oncology, 2012, 46, 226-32.	1.7	15
64	Highâ€resolution analyses of cell fusion dynamics in a biochip. Electrophoresis, 2012, 33, 2508-2515.	2.4	3
65	Transport of siRNA through Lipid Membranes Driven by Nanosecond Electric Pulses: An Experimental and Computational Study. Journal of the American Chemical Society, 2012, 134, 13938-13941.	13.7	85
66	Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry, 2012, 87, 260-264.	4.6	69
67	2-NBDG, a Fluorescent Analogue of Glucose, as a Marker for Detecting Cell Electropermeabilization In Vitro. Journal of Membrane Biology, 2012, 245, 633-642.	2.1	3
68	In Vivo Muscle Electroporation Threshold Determination: Realistic Numerical Models and In Vivo Experiments. Journal of Membrane Biology, 2012, 245, 509-520.	2.1	45
69	Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells. PLoS ONE, 2012, 7, e41733.	2.5	141
70	Microbubble Sonodestruction Rate as a Metric to Evaluate Sonoporation Efficiency. Journal of Ultrasound in Medicine, 2012, 31, 1993-2000.	1.7	15
71	Nanosecond-Duration Electric Pulse Delivery In Vitro and In Vivo: Experimental Considerations. IEEE Transactions on Instrumentation and Measurement, 2012, 61, 1945-1954.	4.7	13
72	Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics, 2012, 33, 106-123.	1.6	162

#	Article	IF	CITATIONS
73	Cell Electropermeabilization and Cellular Uptake of Small Molecules: The Electrochemotherapy Concept. , 2011, , 69-82.		17
74	Antitumoral and antimetastatic effect of antiangiogenic plasmids in B16 melanoma: Higher efficiency of the recombinant disintegrin domain of ADAM 15. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 314-319.	4.3	25
75	Design and realization of a microfluidic device devoted to the application of ultra-short pulses of electrical field to living cells. Sensors and Actuators B: Chemical, 2011, 160, 1573-1580.	7.8	21
76	Characterization of a 50- \hat{I} © Exposure Setup for High-Voltage Nanosecond Pulsed Electric Field Bioexperiments. IEEE Transactions on Biomedical Engineering, 2011, 58, 207-214.	4.2	58
77	A microfluidic biochip for the nanoporation of living cells. Biosensors and Bioelectronics, 2011, 26, 4649-4655.	10.1	38
78	Exposition of cells in suspension using nanosecond duration electric pulses-detection of permeabilisation by cloning efficiency tests: Results and artifacts. , 2011, , .		0
79	Electrochemotherapy of Small Tumors; The Experience from the ESOPE (European Standard Operating) Tj ETQq1	1 0.78431	4 ₃ rgBT /Ove
80	Halting angiogenesis by non-viral somatic gene therapy alleviates psoriasis and murine psoriasiform skin lesions. Journal of Clinical Investigation, 2011, 121, 410-421.	8.2	33
81	Hollow Microneedle Arrays for Intradermal Drug Delivery and DNA Electroporation. Journal of Membrane Biology, 2010, 236, 117-125.	2.1	92
82	Electroporation-Based Technologies and Treatments. Journal of Membrane Biology, 2010, 236, 1-2.	2.1	23
83	The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Medical and Biological Engineering and Computing, 2010, 48, 637-648.	2.8	81
84	A high density microfluidic device for cell pairing and electrofusion. Procedia Engineering, 2010, 5, 49-52.	1.2	2
85	Electrical modeling of the influence of medium conductivity on electroporation. Physical Chemistry Chemical Physics, 2010, 12, 10055.	2.8	71
86	Nanomanipulation of Living Cells on a Chip Using Electric Field: General Concepts and Microdevices. , 2010, , .		1
87	The Place of the Electroporation-Based Antitumor Therapies in the Electrical Armamentarium against Cancer. Series in Biomedical Engineering, 2010, , 223-233.	0.5	2
88	Nucleic Acids Electrotransfer In Vivo: Mechanisms and Practical Aspects. Current Gene Therapy, 2010, 10, 267-280.	2.0	54
89	Electroporating Fields Target Oxidatively Damaged Areas in the Cell Membrane. PLoS ONE, 2009, 4, e7966.	2.5	116
90	Physical methods of nucleic acid transfer: general concepts and applications. British Journal of Pharmacology, 2009, 157, 207-219.	5.4	107

#	Article	IF	CITATIONS
91	<i>In vivo</i> electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Physics in Medicine and Biology, 2009, 54, 5949-5963.	3.0	158
92	Extent of cell electrofusion in vitro and in vivo is cell line dependent. Anticancer Research, 2009, 29, 3125-30.	1.1	22
93	Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunology, Immunotherapy, 2008, 57, 1291-1300.	4.2	65
94	Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies. Physics in Medicine and Biology, 2008, 53, 6605-6618.	3.0	43
95	Physiological Effects of High- and Low-Voltage Pulse Combinations for Gene Electrotransfer in Muscle. Human Gene Therapy, 2008, 19, 1249-1260.	2.7	69
96	Application of Electroporation Gene Therapy: Past, Current, and Future. Methods in Molecular Biology, 2008, 423, 3-17.	0.9	47
97	Importance of Contact Surface between Electrodes and Treated Tissue in Electrochemotherapy. Technology in Cancer Research and Treatment, 2008, 7, 393-399.	1.9	36
98	Cost-effectiveness analysis of electrochemotherapy with the Cliniporatorâ,,¢ vs other methods for the control and treatment of cutaneous and subcutaneous tumors. Therapeutics and Clinical Risk Management, 2008, Volume 4, 541-548.	2.0	48
99	EFFICIENCY OF HIGH AND LOW VOLTAGE PULSE COMBINATIONS FOR GENE ELECTROTRANSFER IN MUSCLE, LIVER, TUMOR AND SKIN. Human Gene Therapy, 2008, 19, 081015093227032.	2.7	74
100	PHYSIOLOGICAL EFFECTS OF HIGH AND LOW VOLTAGE PULSE COMBINATIONS FOR GENE ELECTROTRANSFER IN MUSCLE. Human Gene Therapy, 2008, .	2.7	1
101	Mitochondria-independent morphological and biochemical apoptotic alterations promoted by the anti-tumor agent bleomycin in Saccharomyces cerevisiae. Biochemistry and Cell Biology, 2007, 85, 49-55.	2.0	17
102	Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry, 2007, 70, 501-507.	4.6	137
103	Bases and rationale of the electrochemotherapy. , 2007, , 622-622.		2
104	Tumor Ablation with Irreversible Electroporation. PLoS ONE, 2007, 2, e1135.	2.5	421
105	Electrogenetransfer in Clinical Applications. , 2006, , 219-226.		4
106	Successful repetitive treatments by electrochemotherapy of multiple unresectable Kaposi sarcoma nodules. European Journal of Cancer, Supplement, 2006, 4, 29-31.	2.2	13
107	Electrochemotherapy – An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. European Journal of Cancer, Supplement, 2006, 4, 3-13.	2.2	713
108	Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. European Journal of Cancer, Supplement, 2006, 4, 14-25.	2.2	474

#	Article	IF	CITATIONS
109	In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation. IEEE Transactions on Biomedical Engineering, 2006, 53, 1409-1415.	4.2	442
110	Gene transfer with HSP 70 in rat chondrocytes confers cytoprotection in vitro and during experimental osteoarthritis. FASEB Journal, 2006, 20, 65-75.	0.5	70
111	Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18721-18726.	7.1	216
112	A case of perineal malignant melanoma successfully treated with electrochemotherapy. Melanoma Research, 2005, 15, 133-134.	1.2	23
113	Sequential Finite Element Model of Tissue Electropermeabilization. IEEE Transactions on Biomedical Engineering, 2005, 52, 816-827.	4.2	232
114	The Course of Tissue Permeabilization Studied on a Mathematical Model of a Subcutaneous Tumor in Small Animals. IEEE Transactions on Biomedical Engineering, 2005, 52, 1373-1381.	4.2	131
115	Electrophoretic Component of Electric Pulses Determines the Efficacy of In Vivo DNA Electrotransfer. Human Gene Therapy, 2005, 16, 1194-1201.	2.7	126
116	In vitro increase of the fluid-phase endocytosis induced by pulsed radiofrequency electromagnetic fields: importance of the electric field component. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1668, 126-137.	2.6	36
117	Electric Pulseâ€Mediated Gene Delivery to Various Animal Tissues. Advances in Genetics, 2005, 54, 83-114.	1.8	123
118	Electrophoretic Component of Electric Pulses Determines the Efficacy of In Vivo DNA Electrotransfer. Human Gene Therapy, 2005, .	2.7	1
119	In Vivo DNA Electrotransfer in Skeletal Muscle. , 2004, 245, 227-236.		1
120	Macroscopic characterization of cell electroporation in biological tissue based on electrical measurements. Applied Physics Letters, 2004, 85, 4520.	3.3	28
121	Evidence of Antiangiogenic and Antimetastatic Activities of the Recombinant Disintegrin Domain of Metargidin. Cancer Research, 2004, 64, 2062-2069.	0.9	94
122	Electrical Impedance Tomography for Imaging Tissue Electroporation. IEEE Transactions on Biomedical Engineering, 2004, 51, 761-767.	4.2	100
123	Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry, 2003, 61, 99-107.	4.6	165
124	Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry, 2003, 60, 1-10.	4.6	122
125	Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treatment Reviews, 2003, 29, 371-387.	7.7	481
126	Comparative Roles of the Cell Wall and Cell Membrane in Limiting Uptake of Xenobiotic Molecules by Saccharomyces cerevisiae. Antimicrobial Agents and Chemotherapy, 2003, 47, 2012-2014.	3.2	26

#	Article	IF	CITATIONS
127	Direct gene transfer into rat articular cartilage by in vivo electroporation. FASEB Journal, 2003, 17, 829-835.	0.5	42
128	Effects of Electrogenetherapy with p53wt Combined with Cisplatin on Survival of Human Tumor Cell Lines with Different p53 Status. DNA and Cell Biology, 2003, 22, 765-775.	1.9	17
129	Mechanisms of in Vivo DNA Electrotransfer: Respective Contributions of Cell Electropermeabilization and DNA Electrophoresis. Molecular Therapy, 2002, 5, 133-140.	8.2	280
130	Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochimica Et Biophysica Acta - General Subjects, 2002, 1569, 51-58.	2.4	177
131	Apoptosis of tumoral and nontumoral lymphoid cells is induced by both mdm2 and p53 antisense oligodeoxynucleotides. Blood, 2001, 97, 1043-1049.	1.4	23
132	Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Bioelectrochemistry, 2001, 54, 83-90.	4.6	127
133	Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry, 2001, 53, 1-10.	4.6	306
134	Slow Accumulation of Plasmid in Muscle Cells: Supporting Evidence for a Mechanism of DNA Uptake by Receptor-Mediated Endocytosis. Molecular Therapy, 2001, 4, 317-323.	8.2	82
135	Evaluation of Cell Membrane Electropermeabilization by Means of a Nonpermeant Cytotoxic Agent. BioTechniques, 2000, 28, 921-926.	1.8	55
136	Treatment of Multiple Spontaneous Breast Tumors in Mice Using Electrochemotherapy. , 2000, 37, 265-269.		0
137	Electroporation of Muscle Tissue In Vivo. , 2000, 37, 271-276.		1
138	The Basis of Electrochemotherapy. , 2000, 37, 99-117.		24
139	Treatment of Spontaneous Soft Tissue Sarcomas in Cat. , 2000, 37, 305-311.		1
140	Treatment of Liver Tumors in Rabbit. , 2000, 37, 327-332.		0
141	Treatment of Murine Transplanted Subcutaneous Tumors Using Systemic Drug Administration. , 2000, 37, 247-252.		0
142	A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica Et Biophysica Acta - General Subjects, 2000, 1523, 73-83.	2.4	307
143	Mechanisms of electrochemotherapy. Advanced Drug Delivery Reviews, 1999, 35, 107-118.	13.7	231
144	Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochemical Pharmacology, 1999, 57, 45-56.	4.4	118

#	Article	IF	CITATIONS
145	In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochimica Et Biophysica Acta - General Subjects, 1999, 1428, 233-240.	2.4	210
146	Determination of Optimal Parameters for in Vivo Gene Transfer by Electroporation, Using a Rapid in Vivo Test for Cell Permeabilization. Biochemical and Biophysical Research Communications, 1999, 261, 377-380.	2.1	133
147	Long-term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. Comptes Rendus De L'Acad˩mie Des Sciences S̩rie 3, Sciences De La Vie, 1998, 321, 893-899.	0.8	157
148	SUCCESSFUL TREATMENT OF METASTATIC SKIN LESIONS WITH ELECTROCHEMOTHERAPY. Journal of Urology, 1998, 160, 1426-1426.	0.4	51
149	Enhancement of cytotoxicity by electropermeabilization. Anti-Cancer Drugs, 1998, 9, 319-326.	1.4	185
150	Antimetastatic effects of electrochemotherapy and of histoincompatible interleukin-2-secreting cells in the murine Lewis lung tumor. Anti-Cancer Drugs, 1998, 9, 551-556.	1.4	30
151	Highly Efficient Oligonucleotide Transfer into Intact Yeast Cells Using Square-Wave Pulse Electroporation. BioTechniques, 1998, 25, 294-296.	1.8	13
152	Competitive and Non-Competitive Inhibition of the Multidrug-Resistance-Associated P-glycoprotein ATPase. Further Experimental Evidence for a Multisite Model. FEBS Journal, 1997, 244, 664-673.	0.2	120
153	Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti-tumor effectiveness in immunocompotent and immunodeficient mice. Bioelectrochemistry, 1997, 43, 279-283.	1.0	73
154	Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators. Biochemical Journal, 1996, 317, 515-522.	3.7	116
155	Antitumor electrochemotherapy: New advances in the clinical protocol. , 1996, 77, 956-963.		156
156	Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. , 1996, 77, 964-971.		260
157	Systemic Antitumor Effects of Electrochemotherapy Combined with Histoincompatible Cells Secreting Interleukin-2. Journal of Immunotherapy, 1995, 17, 30-38.	2.4	92
158	Electrochemotherapy: variable anti-tumor effect on different tumor models. Bioelectrochemistry, 1994, 35, 23-27.	1.0	62
159	Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 155-163.	2.6	119
160	Involvement of membrane bleomycin-binding sites in bleomycin cytotoxicity. Biochemical Pharmacology, 1994, 48, 301-310.	4.4	37
161	Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer, 1993, 72, 3694-3700.	4.1	418
162	Cell electropermeabilization: a new tool for biochemical and pharmacological studies. BBA - Biomembranes, 1993, 1154, 51-63.	8.0	229

#	Article	IF	CITATIONS
163	Inhibition of tumor growth by histoincompatible cells expressing interleukin-2. International Immunology, 1992, 4, 1429-1436.	4.0	27
164	Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. European Journal of Cancer & Clinical Oncology, 1991, 27, 68-72.	0.7	527
165	Stable [57Co]-bleomycin complex with a very high specific radioactivity for use at very low concentrations. Biochemical and Biophysical Research Communications, 1990, 173, 259-264.	2.1	14
166	Transient electropermeabilization of cells in culture. Biochemical Pharmacology, 1988, 37, 4727-4733.	4.4	397
167	Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: Direct access to the cytosol. Experimental Cell Research, 1988, 175, 15-25.	2.6	267