Rameen Beroukhim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11981685/publications.pdf

Version: 2024-02-01

139	77,906	95	140
papers	citations	h-index	g-index
153	153	153	82772
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	13.5	3,979
2	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	6.6	3,706
3	The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463, 899-905.	13.7	3,331
4	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
5	Genomic Classification of Cutaneous Melanoma. Cell, 2015, 161, 1681-1696.	13.5	2,562
6	GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology, 2011, 12, R41.	3.8	2,546
7	The Molecular Taxonomy of Primary Prostate Cancer. Cell, 2015, 163, 1011-1025.	13.5	2,435
8	Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell, 2014, 159, 676-690.	13.5	2,318
9	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	13.5	2,277
10	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	13.5	2,111
11	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell, 2017, 169, 1327-1341.e23.	13.5	1,794
12	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	13.5	1,718
13	Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 2012, 30, 413-421.	9.4	1,710
14	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	13.5	1,695
15	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	13.5	1,670
16	Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 2013, 45, 1134-1140.	9.4	1,616
17	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-519.	13.5	1,485
18	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-203.e13.	7.7	1,428

#	Article	IF	Citations
19	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 2018, 173, 338-354.e15.	13.5	1,417
20	Molecular Determinants of the Response of Glioblastomas to EGFR Kinase Inhibitors. New England Journal of Medicine, 2005, 353, 2012-2024.	13.9	1,376
21	Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 2005, 436, 117-122.	13.7	1,329
22	Molecular Definition of Breast Tumor Heterogeneity. Cancer Cell, 2007, 11, 259-273.	7.7	1,273
23	Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nature Medicine, 2018, 24, 679-690.	15.2	1,224
24	Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 2004, 6, 17-32.	7.7	1,161
25	Characterizing the cancer genome in lung adenocarcinoma. Nature, 2007, 450, 893-898.	13.7	1,020
26	Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 2011, 43, 869-874.	9.4	945
27	Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20007-20012.	3.3	927
28	Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177.	7.7	821
29	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports, 2018, 23, 239-254.e6.	2.9	801
30	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	13.7	787
31	Frequent and Focal <i>FGFR1</i> Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer. Science Translational Medicine, 2010, 2, 62ra93.	5 . 8	761
32	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	13.7	761
33	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	7.7	750
34	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	13.5	738
35	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 2018, 23, 181-193.e7.	2.9	683
36	Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nature Genetics, 2013, 45, 478-486.	9.4	671

#	Article	IF	CITATIONS
37	Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 2018, 560, 325-330.	13.7	662
38	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell, 2017, 32, 204-220.e15.	7.7	642
39	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	2.9	605
40	Patient-derived xenografts undergo mouse-specific tumor evolution. Nature Genetics, 2017, 49, 1567-1575.	9.4	546
41	Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nature Genetics, 2013, 45, 285-289.	9.4	532
42	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 2017, 31, 181-193.	7.7	532
43	The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature, 2011, 471, 513-517.	13.7	506
44	Highly parallel identification of essential genes in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20380-20385.	3.3	499
45	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	7.7	482
46	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	7.7	478
47	Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nature Genetics, 2020, 52, 331-341.	9.4	431
48	Analyses of non-coding somatic drivers in 2,658Âcancer whole genomes. Nature, 2020, 578, 102-111.	13.7	424
49	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	2.9	416
50	IncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic IncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell, 2018, 33, 706-720.e9.	7.7	400
51	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	7.7	396
52	Mechanisms and therapeutic implications of hypermutation in gliomas. Nature, 2020, 580, 517-523.	13.7	374
53	Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature, 2012, 487, 491-495.	13.7	349
54	Genetic and Functional Studies Implicate $\langle i \rangle HIF1 \langle i \rangle \hat{I}_{\pm}$ as a 14q Kidney Cancer Suppressor Gene. Cancer Discovery, 2011, 1, 222-235.	7.7	347

#	Article	IF	CITATIONS
55	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Reports, 2018, 23, 282-296.e4.	2.9	333
56	Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Reports, 2018, 25, 1304-1317.e5.	2.9	329
57	Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Reports, 2018, 23, 3392-3406.	2.9	324
58	Longitudinal molecular trajectories of diffuse glioma in adults. Nature, 2019, 576, 112-120.	13.7	320
59	Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 2017, 31, 411-423.	7.7	309
60	Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nature Genetics, 2017, 49, 10-16.	9.4	307
61	Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain. PLoS Medicine, 2006, 3, e485.	3.9	298
62	BET Bromodomain Inhibition of <i>MYC</i> -Amplified Medulloblastoma. Clinical Cancer Research, 2014, 20, 912-925.	3.2	296
63	SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Research, 2018, 28, 581-591.	2.4	288
64	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	2.9	284
65	Modeling Genomic Diversity and Tumor Dependency in Malignant Melanoma. Cancer Research, 2008, 68, 664-673.	0.4	275
66	Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nature Genetics, 2020, 52, 306-319.	9.4	275
67	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	13.5	272
68	The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell, 2018, 33, 244-258.e10.	7.7	270
69	Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell, 2021, 184, 2239-2254.e39.	13.5	260
70	Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell, 2018, 174, 433-447.e19.	13.5	258
71	Gastrointestinal Adenocarcinomas of the Esophagus, Stomach, and Colon Exhibit Distinct Patterns of Genome Instability and Oncogenesis. Cancer Research, 2012, 72, 4383-4393.	0.4	242
72	MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nature Genetics, 2016, 48, 273-282.	9.4	214

#	Article	IF	CITATIONS
73	Cancer Vulnerabilities Unveiled by Genomic Loss. Cell, 2012, 150, 842-854.	13.5	209
74	Pan-Cancer Analysis of IncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Reports, 2018, 23, 297-312.e12.	2.9	205
75	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Reports, 2018, 23, 255-269.e4.	2.9	204
76	Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor $\langle i \rangle MYBL1 \langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8188-8193.	3.3	188
77	Integrative Analysis Reveals an Outcome-Associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B Cell Lymphoma. Cancer Cell, 2012, 22, 359-372.	7.7	179
78	The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nature Genetics, 2016, 48, 848-855.	9.4	174
79	Recurrent Hemizygous Deletions in Cancers May Optimize Proliferative Potential. Science, 2012, 337, 104-109.	6.0	172
80	Chemical Genomics Identifies Small-Molecule MCL1 Repressors and BCL-xL as a Predictor of MCL1 Dependency. Cancer Cell, 2012, 21, 547-562.	7.7	158
81	Genomic evolution of cancer models: perils and opportunities. Nature Reviews Cancer, 2019, 19, 97-109.	12.8	158
82	Overexpression, Amplification, and Androgen Regulation of TPD52 in Prostate Cancer. Cancer Research, 2004, 64, 3814-3822.	0.4	145
83	Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nature Genetics, 2014, 46, 588-594.	9.4	144
84	Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs. Cell, 2020, 183, 197-210.e32.	13.5	141
85	Genomic evolution and chemoresistance in germ-cell tumours. Nature, 2016, 540, 114-118.	13.7	139
86	Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature, 2021, 590, 486-491.	13.7	135
87	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-Î ² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	2.9	134
88	SGK3 Mediates INPP4B-Dependent PI3K Signaling in Breast Cancer. Molecular Cell, 2014, 56, 595-607.	4.5	133
89	Genomic landscape of high-grade meningiomas. Npj Genomic Medicine, 2017, 2, .	1.7	130
90	The genomic landscape of schwannoma. Nature Genetics, 2016, 48, 1339-1348.	9.4	124

#	Article	IF	Citations
91	Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology, 2018, 20, 873-884.	0.6	119
92	ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Modern Pathology, 2010, 23, 1061-1067.	2.9	114
93	ATARIS: Computational quantification of gene suppression phenotypes from multisample RNAi screens. Genome Research, 2013, 23, 665-678.	2.4	110
94	Genomic landscape of intracranial meningiomas. Journal of Neurosurgery, 2016, 125, 525-535.	0.9	104
95	Buparlisib in Patients With Recurrent Glioblastoma Harboring Phosphatidylinositol 3-Kinase Pathway Activation: An Open-Label, Multicenter, Multi-Arm, Phase II Trial. Journal of Clinical Oncology, 2019, 37, 741-750.	0.8	103
96	Allele-Specific Amplification in Cancer Revealed by SNP Array Analysis. PLoS Computational Biology, 2005, 1, e65.	1.5	100
97	Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro-Oncology, 2017, 19, now235.	0.6	99
98	Landscape of Genomic Alterations in Pituitary Adenomas. Clinical Cancer Research, 2017, 23, 1841-1851.	3.2	94
99	Single nucleotide polymorphism array analysis of cancer. Current Opinion in Oncology, 2007, 19, 43-49.	1.1	92
100	Distinct genomic aberrations associated with <i>ERG</i> rearranged prostate cancer. Genes Chromosomes and Cancer, 2009, 48, 366-380.	1.5	86
101	Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes and Development, 2014, 28, 1957-1975.	2.7	86
102	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-226.e3.	2.9	83
103	ARID1A and TERT promoter mutations in dedifferentiated meningioma. Cancer Genetics, 2015, 208, 345-350.	0.2	73
104	Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nature Structural and Molecular Biology, 2015, 22, 703-711.	3.6	72
105	Systematic Interrogation of 3q26 Identifies <i>TLOC1</i> and <i>SKIL</i> as Cancer Drivers. Cancer Discovery, 2013, 3, 1044-1057.	7.7	71
106	Integrated Genomic Analysis of the 8q24 Amplification in Endometrial Cancers Identifies ATAD2 as Essential to MYC-Dependent Cancers. PLoS ONE, 2013, 8, e54873.	1.1	70
107	SNP panel identification assay (SPIA): a genetic-based assay for the identification of cell lines. Nucleic Acids Research, 2008, 36, 2446-2456.	6.5	68
108	Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. ELife, 2017, 6, .	2.8	66

#	Article	IF	Citations
109	Beating the odds: extreme long-term survival with glioblastoma. Neuro-Oncology, 2014, 16, 1159-1160.	0.6	63
110	Loss of heterozygosity of essential genes represents a widespread class of potential cancer vulnerabilities. Nature Communications, 2020, 11, 2517.	5.8	60
111	MicroRNA Signatures and Molecular Subtypes of Glioblastoma: The Role of Extracellular Transfer. Stem Cell Reports, 2017, 8, 1497-1505.	2.3	58
112	<i>MECP2</i> Is a Frequently Amplified Oncogene with a Novel Epigenetic Mechanism That Mimics the Role of Activated RAS in Malignancy. Cancer Discovery, 2016, 6, 45-58.	7.7	57
113	Clinical multiplexed exome sequencing distinguishes adult oligodendroglial neoplasms from astrocytic and mixed lineage gliomas. Oncotarget, 2014, 5, 8083-8092.	0.8	55
114	Clinical Identification of Oncogenic Drivers and Copy-Number Alterations in Pituitary Tumors. Endocrinology, 2017, 158, 2284-2291.	1.4	53
115	Molecular profiling and targeted therapy in pediatric gliomas: review and consensus recommendations. Neuro-Oncology, 2019, 21, 968-980.	0.6	52
116	Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells. Nature Communications, 2019, 10, 3731.	5.8	45
117	Genomic profile of human meningioma cell lines. PLoS ONE, 2017, 12, e0178322.	1.1	44
118	Tumor Interferon Signaling Is Regulated by a IncRNA INCR1 Transcribed from the PD-L1 Locus. Molecular Cell, 2020, 78, 1207-1223.e8.	4.5	43
119	Clinical implementation of integrated whole-genome copy number and mutation profiling for glioblastoma. Neuro-Oncology, 2015, 17, 1344-1355.	0.6	40
120	Copy number alterations unmasked as enhancer hijackers. Nature Genetics, 2017, 49, 5-6.	9.4	40
121	Genomic and Epigenomic Landscape in Meningioma. Neurosurgery Clinics of North America, 2016, 27, 167-179.	0.8	31
122	Somatic copy number alterations in gastric adenocarcinomas among Asian and Western patients. PLoS ONE, 2017, 12, e0176045.	1.1	28
123	Pan-Cancer Analysis Links PARK2 to BCL-XL-Dependent Control of Apoptosis. Neoplasia, 2017, 19, 75-83.	2.3	27
124	Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 2020, 11, 4748.	5.8	27
125	MAPK activation and <i>HRAS </i> mutation identified in pituitary spindle cell oncocytoma. Oncotarget, 2016, 7, 37054-37063.	0.8	27
126	Structural variations in cancer and the 3D genome. Nature Reviews Cancer, 2022, 22, 533-546.	12.8	27

#	Article	IF	Citations
127	Genomic Heterogeneity and Exceptional Response to Dual Pathway Inhibition in Anaplastic Thyroid Cancer. Clinical Cancer Research, 2017, 23, 2367-2373.	3.2	24
128	Leveraging molecular datasets for biomarker-based clinical trial design in glioblastoma. Neuro-Oncology, 2017, 19, 908-917.	0.6	23
129	PPM1D mutations are oncogenic drivers of de novo diffuse midline glioma formation. Nature Communications, 2022, 13, 604.	5. 8	22
130	Quantification of aneuploidy in targeted sequencing data using ASCETS. Bioinformatics, 2021, 37, 2461-2463.	1.8	21
131	Structural variants shape driver combinations and outcomes in pediatric high-grade glioma. Nature Cancer, 2022, 3, 994-1011.	5.7	20
132	<i>PIK3CA</i> Amplification Associates with Aggressive Phenotype but Not Markers of AKT-MTOR Signaling in Endometrial Carcinoma. Clinical Cancer Research, 2019, 25, 334-345.	3.2	17
133	Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth. Scientific Reports, 2016, 6, 25521.	1.6	13
134	Case Report: Next generation sequencing identifies a NAB2-STAT6 fusion in Glioblastoma. Diagnostic Pathology, 2016, 11, 13.	0.9	10
135	Reply to Parsons: Many tumor types follow the monoclonal model of tumor initiation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E16-E16.	3.3	6
136	MCL1 and DEDD Promote Urothelial Carcinoma Progression. Molecular Cancer Research, 2019, 17, 1294-1304.	1.5	4
137	Genomic Correlates of Outcome in Tumor-Infiltrating Lymphocyte Therapy for Metastatic Melanoma. Clinical Cancer Research, 2022, 28, 1911-1924.	3.2	3
138	Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. BMC Proceedings, 2012, 6, .	1.8	2
139	Integrative modeling identifies genetic ancestry-associated molecular correlates in human cancer. STAR Protocols, 2021, 2, 100483.	0.5	2