
Li Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1198126/publications.pdf Version: 2024-02-01

LI SHEN

#	Article	IF	CITATIONS
1	Raman enhanced four-wave mixing in silicon core fibers. Optics Letters, 2022, 47, 1626.	3.3	10
2	All-fibre heterogeneously-integrated frequency comb generation using silicon core fibre. Nature Communications, 2022, 13, .	12.8	21
3	Silicon photonic flat-top WDM (de)multiplexer based on cascaded Mach-Zehnder interferometers for the 2 µm wavelength band. Optics Express, 2022, 30, 28232.	3.4	18
4	Four-Wave Mixing-Based Wavelength Conversion and Parametric Amplification in Submicron Silicon Core Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.	2.9	22
5	Stimulated Raman Scattering in a Tapered Submicron Silicon Core Fiber. , 2021, , .		0
6	Continuous-wave Raman amplification in silicon core fibers pumped in the telecom band. APL Photonics, 2021, 6, .	5.7	16
7	Raman Enhanced Four-Wave Mixing in Silicon Core Fibers. , 2021, , .		0
8	A review of nonlinear applications in silicon optical fibers from telecom wavelengths into the mid-infrared spectral region. Optics Communications, 2020, 463, 125437.	2.1	10
9	High-Performance Silicon 2Â×Â2 Thermo-Optic Switch for the 2-\$mu\$m Wavelength Band. IEEE Photonics Journal, 2019, 11, 1-6.	2.0	11
10	Net optical parametric gain in a submicron silicon core fiber pumped in the telecom band. APL Photonics, 2019, 4, .	5.7	20
11	Fiber Integrated Wavelength Converter Based on a Silicon Core Fiber With a Nano-Spike Coupler. IEEE Photonics Technology Letters, 2019, 31, 1561-1564.	2.5	10
12	Low-loss silicon core fibre platform for mid-infrared nonlinear photonics. Light: Science and Applications, 2019, 8, 105.	16.6	36
13	Generation of optical vortices using asymmetrically spliced fibers. Journal of Optics (United) Tj ETQq1 1 0.784314	4 rgBT /Ov 2.2	verlock 10 Tf
14	Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2  μm waveband. Photonics Research, 2019, 7, 1030.	7.0	54
15	Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 <i>14</i> m. Applied Physics Letters, 2018, 112, .	3.3	12
16	Wavelength Conversion and Supercontinuum Generation in Silicon Optical Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-9.	2.9	35
17	Subwavelength grating slot (SWGS) waveguide at 2 μm for chip-scale data transmission. Nanophotonics, 2018, 7, 865-871.	6.0	15
18	Generation of Orbital Angular Momentum Beam Using Fiber-to-Fiber Butt Coupling. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	11

LI SHEN

#	Article	IF	CITATIONS
19	Reconfigurable and tunable compact comb filter and (de)interleaver on silicon platform. Optics Express, 2018, 26, 4358.	3.4	22
20	Wideband and continuously-tunable fractional photonic Hilbert transformer based on a single high-birefringence planar Bragg grating. Optics Express, 2018, 26, 20450.	3.4	12
21	Experimental demonstration of broadband generation of optical vortices using asymmetrically spliced fibers. , 2018, , .		1
22	Demonstration of on-chip 640-Gbit/s throughput, granularity-flexible programmable optical filtering and reconfigurable optical add/drop multiplexing on silicon platform. , 2018, , .		2
23	Experimental demonstration of 2- $\hat{1}$ /4m on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer. , 2018, , .		3
24	Experimental demonstation of wavelength- and bandwidth-tunable compact integrated silicon photonic comb filter. , 2017, , .		0
25	Asymmetric optical mode conversion by quasi PT-symmetric waveguide structure. , 2017, , .		0
26	Subwavelength grating slot (SWGS) waveguide on silicon platform. Optics Express, 2017, 25, 18250.	3.4	39
27	Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform. Optics Express, 2017, 25, 25655.	3.4	36
28	Compact tunable photonic comb filter on a silicon platform. Optics Letters, 2017, 42, 2762.	3.3	20
29	Channel-selective wavelength conversion of quadrature amplitude modulation signal using a graphene-assisted silicon microring resonator. Optics Letters, 2017, 42, 799.	3.3	17
30	Demonstration of Orbital Angular Momentum (OAM) Fiber Amplifier in Data-Carrying OAM-Division Multiplexing and Wavelength-Division Multiplexing (WDM) System. , 2017, , .		3
31	Experimental Demonstration of 20-Gbit/s Data Transmission Link using a 1.1 km Elliptical-Core Few-Mode Fiber assisted by Mapping from Conventional Amplitude Modulation to Spatial Mode Modulation. , 2017, , .		0
32	Demonstration of on-chip tunable Fano resonance based on interference between microring resonator and Fabry-Perot cavity. , 2017, , .		1
33	Experimental demonstration of silicon strip and slot waveguides for 2 μm chip-scale optical data transmission. , 2017, , .		0
34	Demonstration of Hybrid Orbital Angular Momentum (OAM) and Gaussian Mode Encoding/Decoding for 10-Gbit/s Data Transmission through a 2.6-km Conventional Graded-Index Multimode (OM3) Fiber. , 2017, , .		0
35	Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Optics Letters, 2016, 41, 4680.	3.3	66
36	Graphene-Based Fiber Polarizer With PVB-Enhanced Light Interaction. Journal of Lightwave Technology, 2016, 34, 3563-3567.	4.6	25

LI SHEN

#	Article	IF	CITATIONS
37	Graphene-assisted multiple-input high-base optical computing. , 2016, , .		1
38	Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss. Scientific Reports, 2016, 6, 23512.	3.3	43
39	Crystalline Silicon Optical Fibers with Low Optical Loss. ACS Photonics, 2016, 3, 378-384.	6.6	34
40	Semiconductor optical fibers for nonlinear applications. , 2016, , .		1
41	Tapered polysilicon core fibers for nonlinear photonics. Optics Letters, 2016, 41, 1360.	3.3	51
42	Design of compact orbital angular momentum (OAM) beams generator on an integrated silicon platform. , 2016, , .		0
43	Functionalized optical fibers for non-linear optics. , 2016, , .		1
44	High-speed detection at two micrometres with monolithic silicon photodiodes. Nature Photonics, 2015, 9, 393-396.	31.4	192
45	Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides. Optics Letters, 2015, 40, 268.	3.3	74
46	Two-photon absorption and all-optical modulation in germanium-on-silicon waveguides for the mid-infrared. Optics Letters, 2015, 40, 2213.	3.3	27
47	Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtosecond pulses with high beam quality. Applied Physics B: Lasers and Optics, 2014, 117, 987-993.	2.2	13
48	Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 394-404.	2.9	106
49	Mid-IR heterogeneous silicon photonics. Proceedings of SPIE, 2013, , .	0.8	2
50	Silicon-based heterogeneous photonic integrated circuits for the mid-infrared. Optical Materials Express, 2013, 3, 1523.	3.0	65