
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11977344/publications.pdf Version: 2024-02-01

I WE MARY

#	Article	IF	CITATIONS
1	Emerging technologies and their impact on regulatory science. Experimental Biology and Medicine, 2022, 247, 1-75.	2.4	22
2	Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model. Toxicology, 2021, 448, 152637.	4.2	32
3	Demonstration of the firstâ€pass metabolism in the skin of the hair dye, 4â€aminoâ€2â€hydroxytoluene, using the Chip2 skin–liver microphysiological model. Journal of Applied Toxicology, 2021, 41, 1553-1567.	2.8	14
4	Generation of two additional integration-free iPSC lines from related human donors. Stem Cell Research, 2021, 53, 102327.	0.7	1
5	An Individual Patient's "Body―on Chips—How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach. Frontiers in Medicine, 2021, 8, 728866.	2.6	6
6	Human body-on-a-chip systems. , 2020, , 429-439.		5
7	Automation and opportunities for industry scale-up of microphysiological systems. , 2020, , 441-462.		4
8	Metalâ€Specific Biomaterial Accumulation in Human Periâ€Implant Bone and Bone Marrow. Advanced Science, 2020, 7, 2000412.	11.2	48
9	The microfollicle: a model of the human hair follicle for in vitro studies. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 847-858.	1.5	12
10	Human multi-organ chip co-culture of bronchial lung culture and liver spheroids for substance exposure studies. Scientific Reports, 2020, 10, 7865.	3.3	68
11	Repeated dose multi-drug testing using a microfluidic chip-based coculture of human liver and kidney proximal tubules equivalents. Scientific Reports, 2020, 10, 8879.	3.3	23
12	Skin Irritation Testing beyond Tissue Viability: Fucoxanthin Effects on Inflammation, Homeostasis, and Metabolism. Pharmaceutics, 2020, 12, 136.	4.5	30
13	The universal physiological template—a system to advance medicines. Current Opinion in Toxicology, 2020, 23-24, 1-5.	5.0	4
14	Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 761-773.	2.7	31
15	Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 365-394.	1.5	123
16	Microphysiological systems in the evaluation of hematotoxicities during drug development. Current Opinion in Toxicology, 2019, 17, 18-22.	5.0	4
17	Generation of four integration-free iPSC lines from related human donors. Stem Cell Research, 2019, 41, 101615.	0.7	3
18	Autologous induced pluripotent stem cell-derived four-organ-chip. Future Science OA, 2019, 5, FSO413.	1.9	75

#	Article	IF	CITATIONS
19	Optimizing drug discovery by Investigative Toxicology: Current and future trends. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 289-313.	1.5	38
20	A Method for Determination and Simulation of Permeability and Diffusion in a 3D Tissue Model in a Membrane Insert System for Multi-well Plates. Journal of Visualized Experiments, 2018, , .	0.3	15
21	Bone marrowâ€onâ€aâ€chip: Longâ€term culture of human haematopoietic stem cells in a threeâ€dimensional microfluidic environment. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 479-489.	2.7	141
22	Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery. Annual Review of Pharmacology and Toxicology, 2018, 58, 65-82.	9.4	95
23	Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Scientific Reports, 2018, 8, 15010.	3.3	56
24	Bioengineering of a Full-Thickness Skin Equivalent in a 96-Well Insert Format for Substance Permeation Studies and Organ-On-A-Chip Applications. Bioengineering, 2018, 5, 43.	3.5	28
25	The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose-derived stem cells. Stem Cell Research and Therapy, 2018, 9, 35.	5.5	30
26	miRNA-mediated expression switch of cell adhesion genes driven by microcirculation in chip. Biochip Journal, 2017, 11, 262-269.	4.9	9
27	The ascendance of microphysiological systems to solve the drug testing dilemma. Future Science OA, 2017, 3, FSO0185.	1.9	51
28	Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Scientific Reports, 2017, 7, 14620.	3.3	205
29	Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. Frontiers in Bioengineering and Biotechnology, 2017, 5, 25.	4.1	74
30	Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 272-321.	1.5	214
31	Validation of Bioreactor and Human-on-a-Chip Devices for Chemical Safety Assessment. Advances in Experimental Medicine and Biology, 2016, 856, 299-316.	1.6	5
32	The Multi-organ Chip - A Microfluidic Platform for Long-term Multi-tissue Coculture. Journal of Visualized Experiments, 2015, , e52526.	0.3	56
33	A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing. Journal of Biotechnology, 2015, 205, 36-46.	3.8	124
34	Chip-based human liver–intestine and liver–skin co-cultures – A first step toward systemic repeated dose substance testing in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 77-87.	4.3	171
35	A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab on A Chip, 2015, 15, 2688-2699.	6.0	662
36	Emulating human microcapillaries in a multi-organ-chip platform. Journal of Biotechnology, 2015, 216, 1-10.	3.8	48

#	Article	IF	CITATIONS
37	Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 327-378.	1.5	108
38	Human immunity in vitro — Solving immunogenicity and more. Advanced Drug Delivery Reviews, 2014, 69-70, 103-122.	13.7	53
39	Aspects of vascularization in Multi-Organ-Chips. BMC Proceedings, 2013, 7, O6.	1.6	0
40	A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab on A Chip, 2013, 13, 3538.	6.0	396
41	Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab on A Chip, 2013, 13, 3555.	6.0	221
42	Development and Analysis of Alpha 1-Antitrypsin Neoglycoproteins: The Impact of Additional <i>N</i> -Glycosylation Sites on Serum Half-Life. Molecular Pharmaceutics, 2013, 10, 2616-2629.	4.6	30
43	Chip-based liver equivalents for toxicity testing – organotypicalness versus cost-efficient high throughput. Lab on A Chip, 2013, 13, 3481.	6.0	94
44	Fluorescent optical fiber sensors for cell viability monitoring. Analyst, The, 2013, 138, 4066.	3.5	9
45	Integrating biological vasculature into a multi-organ-chip microsystem. Lab on A Chip, 2013, 13, 3588.	6.0	155
46	Trends in Cell Culture Technology. Advances in Experimental Medicine and Biology, 2012, 745, 26-46.	1.6	11
47	Crosstalk between immune cells and mesenchymal stromal cells in a 3D bioreactor system. International Journal of Artificial Organs, 2012, 35, 986-995.	1.4	12
48	Crosstalk between Immune Cells and Mesenchymal Stromal Cells in a 3D Bioreactor System. International Journal of Artificial Organs, 2012, 35, 986-995.	1.4	14
49	â€~Human-on-a-chip' Developments: A Translational Cutting-edge Alternative to Systemic Safety Assessment and Efficiency Evaluation of Substances in Laboratory Animals and Man?. ATLA Alternatives To Laboratory Animals, 2012, 40, 235-257.	1.0	153
50	Quantitative MALDI-TOF-MS Using Stable-isotope Labeling: Application to the Analysis of N-glycans of Recombinant α-1 Antitrypsin Produced Using Different Culture Parameters. Journal of Carbohydrate Chemistry, 2011, 30, 320-333.	1.1	2
51	Nâ€glycosylation and biological activity of recombinant human alpha1â€antitrypsin expressed in a novel human neuronal cell line. Biotechnology and Bioengineering, 2011, 108, 2118-2128.	3.3	51
52	Biological cardio-micro-pumps for microbioreactors and analytical micro-systems. Sensors and Actuators B: Chemical, 2011, 156, 517-526.	7.8	28
53	Design and prototyping of a chip-based multi-micro-organoid culture system for substance testing, predictive to human (substance) exposure. Journal of Biotechnology, 2010, 148, 70-75.	3.8	62
54	Immunological substance testing on human lymphatic micro-organoids in vitro. Journal of Biotechnology, 2010, 148, 38-45.	3.8	74

#	Article	IF	CITATIONS
55	Organotypic tissue culture for substance testing. Journal of Biotechnology, 2010, 148, 1-2.	3.8	3
56	A Human Lymph Node In Vitro?Challenges and Progress. Artificial Organs, 2006, 30, 803-808.	1.9	88
57	Monoclonal Antibody Production. ATLA Alternatives To Laboratory Animals, 1997, 25, 121-135.	1.0	44
58	Improved removal of viruslike particles from purified monoclonal antibody IgM preparation via virus filtration. Nature Biotechnology, 1996, 14, 651-652.	17.5	11
59	Measurement and Simulation of Permeation and Diffusion in Native and Cultivated Tissue Constructs. , 0, , .		3