Thomas R Insel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11975849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data mining for health: staking out the ethical territory of digital phenotyping. Npj Digital Medicine, 2018, 1, .	10.9	109
2	Digital phenotyping: a global tool for psychiatry. World Psychiatry, 2018, 17, 276-277.	10.4	188
3	Digital Technologies in Psychiatry: Present and Future. Focus (American Psychiatric Publishing), 2018, 16, 251-258.	0.8	45
4	Preparing Physician-Scientists for an Evolving Research Ecosystem. JAMA - Journal of the American Medical Association, 2018, 320, 31.	7.4	13
5	Building the Thermometer for Mental Health. Cerebrum: the Dana Forum on Brain Science, 2018, 2018, .	0.1	5
6	Digital Phenotyping. JAMA - Journal of the American Medical Association, 2017, 318, 1215.	7.4	548
7	Join the disruptors of health science. Nature, 2017, 551, 23-26.	27.8	13
8	Translating Oxytocin Neuroscience to the Clinic: A National Institute of Mental Health Perspective. Biological Psychiatry, 2016, 79, 153-154.	1.3	49
9	The NIMH experimental medicine initiative. World Psychiatry, 2015, 14, 151-153.	10.4	125
10	Schizophrenia. Nature Reviews Disease Primers, 2015, 1, 15067.	30.5	724
11	National Institute of Mental Health Clinical Trials. JAMA Psychiatry, 2014, 71, 745.	11.0	147
12	The NIMH Research Domain Criteria (RDoC) Project: Precision Medicine for Psychiatry. American Journal of Psychiatry, 2014, 171, 395-397.	7.2	1,170
13	Harnessing the informatics revolution for neuroscience drug R&D. Nature Reviews Drug Discovery, 2014, 13, 561-562.	46.4	7
14	Mind the Gap: Neuroscience Literacy and the Next Generation of Psychiatrists. Academic Psychiatry, 2014, 38, 121-123.	0.9	23
15	Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Medicine, 2013, 11, 126.	5.5	2,210
16	Twenty-Five Years of Progress: The View from NIMH and NINDS. Neuron, 2013, 80, 561-567.	8.1	73
17	Grand Challenges in Global Mental Health: Integration in Research, Policy, and Practice. PLoS Medicine, 2013, 10, e1001434.	8.4	167
18	Translating Discoveries into Medicine: Psychiatric Drug Development in 2011. Neuropsychopharmacology, 2012, 37, 281-283.	5.4	23

#	Article	IF	CITATIONS
19	Next-Generation Treatments for Mental Disorders. Science Translational Medicine, 2012, 4, 155ps19.	12.4	136
20	A plan for mental illness. Nature, 2012, 483, 269-269.	27.8	64
21	Standardization, Integration, and Sharing—Leveraging Research Investments. Biological Psychiatry, 2011, 70, 5-6.	1.3	15
22	Grand challenges in global mental health. Nature, 2011, 475, 27-30.	27.8	1,654
23	Rebooting for Whom?. Perspectives on Psychological Science, 2011, 6, 478-482.	9.0	38
24	Faulty Circuits. Scientific American, 2010, 302, 44-51.	1.0	73
25	Rethinking schizophrenia. Nature, 2010, 468, 187-193.	27.8	1,482
26	The Challenge of Translation in Social Neuroscience: A Review of Oxytocin, Vasopressin, and Affiliative Behavior. Neuron, 2010, 65, 768-779.	8.1	971
27	Early Life Programming and Neurodevelopmental Disorders. Biological Psychiatry, 2010, 68, 314-319.	1.3	791
28	Rethinking Mental Illness. JAMA - Journal of the American Medical Association, 2010, 303, 1970.	7.4	158
29	Disruptive insights in psychiatry: transforming a clinical discipline. Journal of Clinical Investigation, 2009, 119, 700-705.	8.2	131
30	Translating Scientific Opportunity Into Public Health Impact. Archives of General Psychiatry, 2009, 66, 128.	12.3	411
31	Endophenotypes: Bridging Genomic Complexity and Disorder Heterogeneity. Biological Psychiatry, 2009, 66, 988-989.	1.3	249
32	Cognitive Neuroscience and Schizophrenia: Translational Research in Need of a Translator. Biological Psychiatry, 2008, 64, 2-3.	1.3	21
33	Assessing the Economic Costs of Serious Mental Illness. American Journal of Psychiatry, 2008, 165, 663-665.	7.2	393
34	Shining Light on Depression. Science, 2007, 317, 757-758.	12.6	16
35	From Animal Models to Model Animals. Biological Psychiatry, 2007, 62, 1337-1339.	1.3	92
36	Eating disorders: National Institute of Mental Health's perspective American Psychologist, 2007, 62, 159-166.	4.2	40

#	Article	IF	CITATIONS
37	The arrival of preemptive psychiatry. Microbial Biotechnology, 2007, 1, 5-6.	1.7	83
38	Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nature Neuroscience, 2006, 9, 133-139.	14.8	386
39	Developmental psychobiology for public health: A bridge for translational research. Developmental Psychobiology, 2005, 47, 209-216.	1.6	18
40	Psychiatry as a Clinical Neuroscience Discipline. JAMA - Journal of the American Medical Association, 2005, 294, 2221.	7.4	265
41	Neuroendocrine basis of social recognition. Current Opinion in Neurobiology, 2004, 14, 248-253.	4.2	178
42	HOW THE BRAIN PROCESSES SOCIAL INFORMATION: Searching for the Social Brain. Annual Review of Neuroscience, 2004, 27, 697-722.	10.7	489
43	Epigenetic sources of behavioral differences in mice. Nature Neuroscience, 2003, 6, 445-446.	14.8	322
44	Is social attachment an addictive disorder?. Physiology and Behavior, 2003, 79, 351-357.	2.1	390
45	Rearing Effects on Cerebrospinal Fluid Oxytocin Concentration and Social Buffering in Rhesus Monkeys. Neuropsychopharmacology, 2003, 28, 910-918.	5.4	348
46	Psychiatry in the Genomics Era. American Journal of Psychiatry, 2003, 160, 616-620.	7.2	71
47	Social anxiety: from laboratory studies to clinical practice. Biological Psychiatry, 2002, 51, 1-3.	1.3	14
48	The Neuroendocrine Basis of Social Recognition. Frontiers in Neuroendocrinology, 2002, 23, 200-224.	5.2	451
49	Increased Number of BrdU-Labeled Neurons in the Rostral Migratory Stream of the Estrous Prairie Vole. Hormones and Behavior, 2001, 39, 11-21.	2.1	115
50	Cellular Mechanisms of Social Attachment. Hormones and Behavior, 2001, 40, 133-138.	2.1	457
51	Chapter 4 Oxytocin: who needs it?. Progress in Brain Research, 2001, 133, 59-66.	1.4	49
52	Facilitation of Affiliation and Pair-Bond Formation by Vasopressin Receptor Gene Transfer into the Ventral Forebrain of a Monogamous Vole. Journal of Neuroscience, 2001, 21, 7392-7396.	3.6	267
53	Oxytocin in the Medial Amygdala is Essential for Social Recognition in the Mouse. Journal of Neuroscience, 2001, 21, 8278-8285.	3.6	938
54	Expression and estrogen regulation of brainâ€derived neurotrophic factor gene and protein in the forebrain of female prairie voles. Journal of Comparative Neurology, 2001, 433, 499-514.	1.6	61

#	Article	IF	CITATIONS
55	The neurobiology of attachment. Nature Reviews Neuroscience, 2001, 2, 129-136.	10.2	1,030
56	Transgenic Models for Oxytocin and Vasopressin. , 2001, , 245-260.		0
57	Toward a Neurobiology of Attachment. Review of General Psychology, 2000, 4, 176-185.	3.2	82
58	Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. Journal of Comparative Neurology, 2000, 421, 172-188.	1.6	279
59	Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 2000, 25, 284-288.	21.4	999
60	Distribution of Corticosteroid Receptors in the Rhesus Brain: Relative Absence of Glucocorticoid Receptors in the Hippocampal Formation. Journal of Neuroscience, 2000, 20, 4657-4668.	3.6	372
61	Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster) Behavioral Neuroscience, 2000, 114, 173-183.	1.2	317
62	Infant Vocalization, Adult Aggression, and Fear Behavior of an Oxytocin Null Mutant Mouse. Hormones and Behavior, 2000, 37, 145-155.	2.1	322
63	Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 1999, 400, 766-768.	27.8	439
64	Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primate brain. Journal of Comparative Neurology, 1999, 408, 365-377.	1.6	283
65	Voles and vasopressin: A review of molecular, cellular, and behavioral studies of pair bonding and paternal behaviors. Progress in Brain Research, 1999, 119, 483-499.	1.4	112
66	Oxytocin, vasopressin, and autism: is there a connection?. Biological Psychiatry, 1999, 45, 145-157.	1.3	233
67	Dopamine D2 receptor-mediated regulation of partner preferences in female prairie voles (Microtus) Tj ETQq1 1 (0.784314 1.2	rgBT /Overloc
68	Autoradiographic and in situ hybridization localization of corticotropinâ€releasing factor 1 and 2 receptors in nonhuman primate brain. Journal of Comparative Neurology, 1999, 408, 365-377.	1.6	5
69	Neuroendocrine bases of monogamy. Trends in Neurosciences, 1998, 21, 71-75.	8.6	284
70	Serotonin and neuropeptides in affiliative behaviors. Biological Psychiatry, 1998, 44, 207-219.	1.3	122
71	Oxytocin, Vasopressin, and the Neuroendocrine Basis of Pair Bond Formation. Advances in Experimental Medicine and Biology, 1998, 449, 215-224.	1.6	126
72	Phenotypic Expression of an Oxytocin Peptide Null Mutation in Mice. Advances in Experimental Medicine and Biology, 1998, 449, 241-243.	1.6	3

#	Article	IF	CITATIONS
73	Species differences in Vâ, a receptor gene expression in monogamous and nonmonogamous voles: Behavioral consequences Behavioral Neuroscience, 1997, 111, 599-605.	1.2	204
74	Gene Targeting Approaches to Neuroendocrinology: Oxytocin, Maternal Behavior, and Affiliation. Hormones and Behavior, 1997, 31, 221-231.	2.1	89
75	Molecular Aspects of Monogamy. Annals of the New York Academy of Sciences, 1997, 807, 302-316.	3.8	69
76	Sexual and social experience is associated with different patterns of behavior and neural activation in male prairie voles. Brain Research, 1997, 767, 321-332.	2.2	161
77	Vasopressin in the forebrain of common marmosets (Callithrix jacchus): studies with in situ hybridization, immunocytochemistry and receptor autoradiography. Brain Research, 1997, 768, 147-156.	2.2	53
78	Changes in Oxytocin Receptor mRNA in Rat Brain During Pregnancy and the Effects of Estrogen and Interleukinâ€6. Journal of Neuroendocrinology, 1997, 9, 859-865.	2.6	143
79	Species differences in vasopressin receptor binding are evident early in development: Comparative anatomic studies in prairie and montane voles. Journal of Comparative Neurology, 1997, 378, 535-546.	1.6	112
80	Vasopressin and oxytocin immunoreactive neurons and fibers in the forebrain of male and female common marmosets (Callithrix jacchus). Synapse, 1997, 27, 14-25.	1.2	60
81	Species differences in vasopressin receptor binding are evident early in development: Comparative anatomic studies in prairie and montane voles. Journal of Comparative Neurology, 1997, 378, 535-546.	1.6	1
82	Parental Behavior in Voles. Advances in the Study of Behavior, 1996, , 361-384.	1.6	31
83	Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: A quantitative comparative study. Journal of Comparative Neurology, 1996, 366, 726-737.	1.6	154
84	Species Differences in Central Oxytocin Receptor Gene Expression: Comparative Analysis of Promoter Sequences. Journal of Neuroendocrinology, 1996, 8, 777-783.	2.6	96
85	A gender-specific mechanism for pair bonding: Oxytocin and partner preference formation in monogamous voles Behavioral Neuroscience, 1995, 109, 782-789.	1.2	424
86	Mating in the monogamous male: Behavioral consequences. Physiology and Behavior, 1995, 57, 615-627.	2.1	224
87	Increased Fos Expression in Oxytocin Neurons Following Masculine Sexual Behavior. Journal of Neuroendocrinology, 1994, 6, 13-18.	2.6	101
88	Oxytocin Administered Centrally Facilitates Formation of a Partner Preference in Female Prairie Voles (<i>Microtus ochrogaster</i>). Journal of Neuroendocrinology, 1994, 6, 247-250.	2.6	442
89	Limbic system fos expression associated with paternal behavior. Brain Research, 1994, 658, 112-118.	2.2	144
90	Axon-sparing lesions of the medial nucleus of the amygdala decrease affiliative behaviors in the prairie vole (Microtus ochrogaster): Behavioral and anatomical specificity Behavioral Neuroscience, 1994, 108, 501-513.	1.2	108

#	Article	IF	CITATIONS
91	A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 1993, 365, 545-548.	27.8	876
92	Gonadal Steroids have Paradoxical Effects on Brain Oxytocin Receptors. Journal of Neuroendocrinology, 1993, 5, 619-628.	2.6	123
93	Effects of central vasopressin administration to infant rats. European Journal of Pharmacology, 1993, 233, 101-107.	3.5	92
94	The role of neurohypophyseal peptides in the central mediation of complex social processes — evidence from comparative studies. Regulatory Peptides, 1993, 45, 127-131.	1.9	42
95	Oxytocin and the Neuroendocrine Basis of Affiliation. , 1993, , 225-251.		3
96	Corticotropin-Releasing Hormone Receptors and the Developing Nervous System. , 1993, , 147-161.		0
97	Oxytocin and the neurobiology of attachment. Behavioral and Brain Sciences, 1992, 15, 515-516.	0.7	13
98	Oxytocin Receptors and Maternal Behavior. Annals of the New York Academy of Sciences, 1992, 652, 122-141.	3.8	60
99	Oxytocin and Social Bondinga. Annals of the New York Academy of Sciences, 1992, 652, 204-211.	3.8	199
100	Oxytocin — A neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology, 1992, 17, 3-35.	2.7	499
101	Neurobiology of Obsessive Compulsive Disorder. Psychiatric Clinics of North America, 1992, 15, 813-824.	1.3	75
102	Enhanced social interactions in rats following chronic, centrally infused oxytocin. Pharmacology Biochemistry and Behavior, 1992, 43, 855-861.	2.9	208
103	Infant rat separation is a sensitive test for novel anxiolytics. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1991, 15, 745-757.	4.8	73
104	Vasopressin modulates male squirrel monkeys' behavior during social separation. European Journal of Pharmacology, 1991, 200, 95-101.	3.5	37
105	Central administration of oxytocin modulates the infant rats response to social isolation. European Journal of Pharmacology, 1991, 203, 149-152.	3.5	163
106	Comparative neuroanatomy of the sexually dimorphic hypothalamus in monogamous and polygamous voles. Brain Research, 1991, 541, 232-240.	2.2	129
107	The infant rat separation paradigm: a novel test for novel anxiolytics. Trends in Pharmacological Sciences, 1991, 12, 402-404.	8.7	97
108	The Regulation of Oxytocin Receptor Binding in the Ventromedial Hypothalaimic Nucleus by Testosterone and Its Metabolites*. Endocrinology, 1991, 128, 891-896.	2.8	73

#	Article	IF	CITATIONS
109	Endogenous opioids: Do they modulate the rat pup's response to social isolation?. Behavioral Neuroscience, 1991, 105, 253-263.	1.2	86
110	Serotonergic modulation of the rat pup ultrasonic isolation call: studies with 5HT1 and 5HT2 subtype-selective agonists and antagonists. Psychopharmacology, 1991, 105, 513-520.	3.1	75
111	A Selective Oxytocin Antagonist Attenuates Progesterone Facilitation of Female Sexual Behavior. Endocrinology, 1991, 128, 3269-3276.	2.8	163
112	Rat Pup Ultrasonic Vocalizations: An Ethologically Relevant Behaviour Responsive to Anxiolytics. , 1991, , 15-36.		26
113	Regional Induction of c-fos-Like Protein in Rat Brain after Estradiol Administration. Endocrinology, 1990, 126, 1849-1853.	2.8	108
114	Regional Changes in Brain Oxytocin Receptors Postâ€Partum: Timeâ€Course and Relationship to Maternal Behaviour. Journal of Neuroendocrinology, 1990, 2, 539-545.	2.6	153
115	Infant's response to social separation reflects adult differences in affiliative behavior: A comparative developmetal study in prairie and montane voles. Developmental Psychobiology, 1990, 23, 375-393.	1.6	120
116	Serotonin in Obsessions, Compulsions, and the Control of Aggressive Impulses. Annals of the New York Academy of Sciences, 1990, 600, 574-585.	3.8	38
117	Rat pup isolation calls are reduced by functional antagonists of the NMDA receptor. European Journal of Pharmacology, 1990, 190, 11-21.	3.5	85
118	Prenatal stress has long-term effects on brain opiate receptors. Brain Research, 1990, 511, 93-97.	2.2	83
119	Serotonin in Obsessive Compulsive Disorder. Psychiatric Annals, 1990, 20, 560-564.	0.1	8
120	Testosterone Modulates Oxytocin Binding in the Hypothalamus of Castrated Male Rats. Neuroendocrinology, 1989, 50, 199-203.	2.5	39
121	Time Course of the Estradiol-Dependent Induction of Oxytocin Receptor Binding in the Ventromedial Hypothalamic Nucleus of the Rat*. Endocrinology, 1989, 125, 1414-1419.	2.8	87
122	CRH and α-helical-CRH modulate behavioral measures of arousal in monkeys. Pharmacology Biochemistry and Behavior, 1989, 32, 919-926.	2.9	50
123	Central administration of corticotropin releasing factor alters rat pup isolation calls. Pharmacology Biochemistry and Behavior, 1989, 32, 197-201.	2.9	69
124	Rat pup isolation distress and the brain benzodiaze pine receptor. Developmental Psychobiology, 1989, 22, 509-525.	1.6	27
125	Decreased in vivo binding to brain benzodiazepine receptors during social isolation. Psychopharmacology, 1989, 97, 142-144.	3.1	41
126	Ontogeny of oxytocin receptors in rat forebrain: A quantitative study. Synapse, 1989, 4, 259-266.	1.2	146

#	Article	IF	CITATIONS
127	Lesions of the hypothalamic paraventricular nucleus disrupt the initiation of maternal behavior. Physiology and Behavior, 1989, 45, 1033-1041.	2.1	213
128	Rearing paradigm in a nonhuman primate affects response to β-CCE challenge. Psychopharmacology, 1988, 96, 81-86.	3.1	23
129	Diagnosis and Treatment of Obsessive-Compulsive Disorder. Psychiatric Annals, 1988, 18, 168-171.	0.1	7
130	The ability of oxytocin to induce short latency maternal behavior is dependent on peripheral anosmia Behavioral Neuroscience, 1987, 101, 439-441.	1.2	61
131	Eye-tracking, attention and amphetamine challenge. Journal of Psychiatric Research, 1987, 21, 129-135.	3.1	13
132	Obsessive-compulsive disorder: psychobiological approaches to diagnosis, treatment, and pathophysiology. Biological Psychiatry, 1987, 22, 667-687.	1.3	391
133	Infant separation distress in genetically fearful rats. Biological Psychiatry, 1987, 22, 786-789.	1.3	32
134	Drug treatment of obsessive-compulsive disorder. Journal of Affective Disorders, 1987, 13, 193-202.	4.1	56
135	Postpartum Increases in Brain Oxytocin Binding. Neuroendocrinology, 1986, 44, 515-518.	2.5	117
136	Rat pup ultrasonic isolation calls: Possible mediation by the benzodiazepine receptor complex. Pharmacology Biochemistry and Behavior, 1986, 24, 1263-1267.	2.9	224
137	Obsessive-compulsive disorder and serotonin: Is there a connection?. Biological Psychiatry, 1985, 20, 1174-1188.	1.3	314
138	Tricyclic response in obsessive compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1985, 9, 25-31.	4.8	16
139	Differential regulation of corticotropin-releasing factor receptors in anterior and intermediate lobes of pituitary and in brain following adrenalectomy in rats. Neuroscience Letters, 1985, 56, 121-128.	2.1	57
140	Therapeutic responses to tricyclic antidepressants and related drugs in non-affective disorder patient populations. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1985, 9, 3-13.	4.8	26
141	Biological alterations in the primary affective disorders and other tricyclic-responsive disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1985, 9, 15-24.	4.8	10
142	A comparison between the growth hormone responses to amphetamine and clonidine. Psychiatry Research, 1985, 16, 79-82.	3.3	7
143	Obsessive Compulsive Disorder: Pharmacologic Approaches. , 1985, 51 Suppl, 259-263.		7
144	A Benzodiazepine Receptor—Mediated Model of Anxiety. Archives of General Psychiatry, 1984, 41, 741.	12.3	182

#	Article	IF	CITATIONS
145	Psychophysiological Changes during Pharmacological Treatment of Patients with Obsessive Compulsive Disorder. British Journal of Psychiatry, 1984, 145, 39-44.	2.8	18
146	Biological markers in obsessive-compulsive and affective disorders. Journal of Psychiatric Research, 1984, 18, 407-423.	3.1	46
147	Neuroendocrine and behavioral effects of m-chlorophenylpiperazine administration in rhesus monkeys. Life Sciences, 1984, 34, 1325-1331.	4.3	71
148	D-Amphetamine in obsessive-compulsive disorder. Psychopharmacology, 1983, 80, 231-235.	3.1	78
149	Growth Hormone Response to Clonidine in Obsessive-Compulsive Patients. British Journal of Psychiatry, 1983, 142, 184-187.	2.8	84
150	Parents of patients with obsessive-compulsive disorder. Psychological Medicine, 1983, 13, 807-811.	4.5	69
151	Obsessive-Compulsive Disorder. Archives of General Psychiatry, 1983, 40, 605.	12.3	327
152	The Sleep of Patients With Obsessive-Compulsive Disorder. Archives of General Psychiatry, 1982, 39, 1372.	12.3	217
153	The dexamethasone suppression test in patients with primary obsessive-compulsive disorder. Psychiatry Research, 1982, 6, 153-160.	3.3	125
154	Growth hormone response to clonidine unchanged by chronic clorgyline treatment. Psychiatry Research, 1982, 7, 139-143.	3.3	35
155	Obsessive compulsive disorder—Five clinical questions and a suggested approach. Comprehensive Psychiatry, 1982, 23, 241-251.	3.1	31
156	The Psychopharmacological Treatment of Obsessive-Compulsive Disorder. Journal of Clinical Psychopharmacology, 1981, 1, 304-311.	1.4	64