Michael S Massey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11968378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications, 2018, 9, 3226.	12.8	141
2	Effectiveness of Recovered Magnesium Phosphates as Fertilizers in Neutral and Slightly Alkaline Soils. Agronomy Journal, 2009, 101, 323-329.	1.8	118
3	Competing retention pathways of uranium upon reaction with Fe(II). Geochimica Et Cosmochimica Acta, 2014, 142, 166-185.	3.9	60
4	Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals. Inorganic Chemistry, 2016, 55, 11736-11746.	4.0	42
5	Uranium Incorporation into Amorphous Silica. Environmental Science & Technology, 2014, 48, 8636-8644.	10.0	35
6	Uranium incorporation into aluminum-substituted ferrihydrite during iron(<scp>ii</scp>)-induced transformation. Environmental Sciences: Processes and Impacts, 2014, 16, 2137-2144.	3.5	32
7	Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR). Chemosphere, 2017, 168, 234-243.	8.2	26
8	Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils. Geoderma, 2021, 381, 114681.	5.1	22
9	Macroscopic and microscopic variation in recovered magnesium phosphate materials: Implications for phosphorus removal processes and product re-use. Bioresource Technology, 2010, 101, 877-885.	9.6	18
10	Phosphorus Sorption Characteristics in Aluminumâ€based Water Treatment Residuals Reacted with Dairy Wastewater: 1. Isotherms, XRD, and SEMâ€EDS Analysis. Journal of Environmental Quality, 2018, 47, 538-545.	2.0	14
11	Phosphorus Sorption to Aluminumâ€based Water Treatment Residuals Reacted with Dairy Wastewater: 2. Xâ€Ray Absorption Spectroscopy. Journal of Environmental Quality, 2018, 47, 546-553.	2.0	12
12	Mechanisms Responsible for Soil Phosphorus Availability Differences between Sprinkler and Furrow Irrigation. Journal of Environmental Quality, 2019, 48, 1370-1379.	2.0	10
13	Fe(II)-induced transformation of iron minerals in soil ferromanganese nodules. Chemical Geology, 2021, 559, 119901.	3.3	10
14	Making Phosphorus Fertilizer from Dairy Wastewater with Aluminum Water Treatment Residuals. Soil Science Society of America Journal, 2019, 83, 649-657.	2.2	9
15	Xâ€Ray Spectroscopic Quantification of Struvite and Dittmarite Recovered from Wastewater. Journal of Environmental Quality, 2019, 48, 193-198.	2.0	7
16	Assessing modified aluminum-based water treatment residuals as a plant-available phosphorus source. Chemosphere, 2020, 247, 125949.	8.2	6
17	Phosphorus removal from swine wastewater using aluminum-based water treatment residuals. Resources Conservation & Recycling X, 2020, 6, 100039.	4.2	3