Adriano Marchese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11968369/publications.pdf

Version: 2024-02-01

87723 143772 5,065 63 38 57 citations h-index g-index papers 63 63 63 5255 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel Insights into Regulation of GPCR Signaling by GRKs and βâ€arrestins. FASEB Journal, 2022, 36, .	0.2	O
2	Hsp70 acts as a fine-switch that controls E3 ligase CHIP-mediated TAp63 and ΔNp63 ubiquitination and degradation. Nucleic Acids Research, 2021, 49, 2740-2758.	6.5	16
3	Role of sorting nexin adaptor proteins in GPCR regulation. FASEB Journal, 2021, 35, .	0.2	O
4	\hat{l}^2 -Arrestin1 and \hat{l}^2 -Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomplex on CXCR4. Frontiers in Immunology, 2020, 11, 550824.	2.2	13
5	A non–GPCR-binding partner interacts with a novel surface on β-arrestin1 to mediate GPCR signaling. Journal of Biological Chemistry, 2020, 295, 14111-14124.	1.6	11
6	The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3. Journal of Biological Chemistry, 2020, 295, 13927-13939.	1.6	7
7	Elucidating the signaling pathways of CXCR4â€dependent chemotaxis FASEB Journal, 2020, 34, 1-1.	0.2	O
8	Heterologous regulation of CXCR4 lysosomal trafficking. Journal of Biological Chemistry, 2019, 294, 8023-8036.	1.6	12
9	Detecting Cell Surface Expression of the G Protein-Coupled Receptor CXCR4. Methods in Molecular Biology, 2018, 1722, 151-164.	0.4	6
10	Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. Journal of Biological Chemistry, 2018, 293, 14891-14904.	1.6	95
11	Endocytosis is required for CXC chemokine receptor type 4 (CXCR4)-mediated Akt activation and antiapoptotic signaling. Journal of Biological Chemistry, 2018, 293, 11470-11480.	1.6	30
12	\hat{l}^2 -Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. Journal of Biological Chemistry, 2016, 291, 26083-26097.	1.6	29
13	Monitoring Chemokine Receptor Trafficking by Confocal Immunofluorescence Microscopy. Methods in Enzymology, 2016, 570, 281-292.	0.4	6
14	Regulation of GPCR Trafficking by Ubiquitin. Progress in Molecular Biology and Translational Science, 2015, 132, 15-38.	0.9	42
15	The Endosomal Sorting Complex Required for Transport Pathway Mediates Chemokine Receptor CXCR4-promoted Lysosomal Degradation of the Mammalian Target of Rapamycin Antagonist DEPTOR. Journal of Biological Chemistry, 2015, 290, 6810-6824.	1.6	23
16	The ubiquitin ligase deltex-3l regulates endosomal sorting of the G protein–coupled receptor CXCR4. Molecular Biology of the Cell, 2014, 25, 1892-1904.	0.9	42
17	Endocytic trafficking of chemokine receptors. Current Opinion in Cell Biology, 2014, 27, 72-77.	2.6	85
18	The ubiquitin ligase Deltexâ€3L regulates endosomal sorting of the G proteinâ€coupled receptor CXCR4 (1066.18). FASEB Journal, 2014, 28, .	0.2	0

#	Article	IF	CITATIONS
19	Ubiquitin-dependent regulation of G protein-coupled receptor trafficking and signaling. Cellular Signalling, 2013, 25, 707-716.	1.7	71
20	Modulation of the CXC Chemokine Receptor 4 Agonist Activity of Ubiquitin through C-Terminal Protein Modification. Biochemistry, 2013, 52, 4184-4192.	1.2	21
21	The ESCRT machinery regulates Akt signaling mediated by the G proteinâ€coupled receptor CXCR4. FASEB Journal, 2013, 27, 556.6.	0.2	1
22	AP-3 regulates PAR1 ubiquitin-independent MVB/lysosomal sorting via an ALIX-mediated pathway. Molecular Biology of the Cell, 2012, 23, 3612-3623.	0.9	51
23	Novel Roles for the E3 Ubiquitin Ligase Atrophin-interacting Protein 4 and Signal Transduction Adaptor Molecule 1 in G Protein-coupled Receptor Signaling. Journal of Biological Chemistry, 2012, 287, 9013-9027.	1.6	42
24	Structural Determinants of Ubiquitin-CXC Chemokine Receptor 4 Interaction. Journal of Biological Chemistry, 2011, 286, 44145-44152.	1.6	40
25	Small Ubiquitin-like Modifier Modification of Arrestin-3 Regulates Receptor Trafficking. Journal of Biological Chemistry, 2011, 286, 3884-3893.	1.6	43
26	The CXC Chemokine Receptor 4 Ligands Ubiquitin and Stromal Cell-derived Factor-1α Function through Distinct Receptor Interactions. Journal of Biological Chemistry, 2011, 286, 33466-33477.	1.6	83
27	Ubiquitination of GPCRs. Methods in Molecular Biology, 2011, 746, 251-259.	0.4	5
28	Arrestin-2 Interacts with the Endosomal Sorting Complex Required for Transport Machinery to Modulate Endosomal Sorting of CXCR4. Molecular Biology of the Cell, 2010, 21, 2529-2541.	0.9	91
29	CXC Chemokine Receptor 4 Is a Cell Surface Receptor for Extracellular Ubiquitin. Journal of Biological Chemistry, 2010, 285, 15566-15576.	1.6	146
30	Ubiquitin receptor binding and signaling in primary human leukocytes. Communicative and Integrative Biology, 2010, 3, 608-610.	0.6	23
31	Ubiquitination Regulates Proteolytic Processing of G Protein-coupled Receptors after Their Sorting to Lysosomes. Journal of Biological Chemistry, 2009, 284, 19361-19370.	1.6	71
32	Chapter 21 Ubiquitination of Chemokine Receptors. Methods in Enzymology, 2009, 460, 413-422.	0.4	13
33	The E3 Ubiquitin Ligase Atrophin Interacting Protein 4 Binds Directly To The Chemokine Receptor CXCR4 Via a Novel WW Domain-mediated Interaction. Molecular Biology of the Cell, 2009, 20, 1324-1339.	0.9	86
34	Cross-talk between Notch and the Estrogen Receptor in Breast Cancer Suggests Novel Therapeutic Approaches. Cancer Research, 2008, 68, 5226-5235.	0.4	311
35	G Protein–Coupled Receptor Sorting to Endosomes and Lysosomes. Annual Review of Pharmacology and Toxicology, 2008, 48, 601-629.	4.2	389
36	Ubiquitination differentially regulates clathrin-dependent internalization of protease-activated receptor-1. Journal of Cell Biology, 2007, 177, 905-916.	2.3	92

#	Article	IF	Citations
37	Arrestin-2 Interacts with the Ubiquitin-Protein Isopeptide Ligase Atrophin-interacting Protein 4 and Mediates Endosomal Sorting of the Chemokine Receptor CXCR4. Journal of Biological Chemistry, 2007, 282, 36971-36979.	1.6	174
38	Assessment of Degradation and Ubiquitination of CXCR4, a GPCR Regulated by EGFR Family Members. , 2006, 327, 139-146.		6
39	CISK attenuates degradation of the chemokine receptor CXCR4 via the ubiquitin ligase AIP4. EMBO Journal, 2006, 25, 3738-3749.	3.5	65
40	Ubiquitination of G-Protein-Coupled Receptors. , 2004, 259, 299-306.		12
41	A new key in breast cancer metastasis. Cancer Cell, 2004, 6, 429-430.	7.7	40
42	The ins and outs of G protein-coupled receptor trafficking. Trends in Biochemical Sciences, 2003, 28, 369-376.	3.7	195
43	The E3 Ubiquitin Ligase AIP4 Mediates Ubiquitination and Sorting of the G Protein-Coupled Receptor CXCR4. Developmental Cell, 2003, 5, 709-722.	3.1	366
44	The Grb10/Nedd4 Complex Regulates Ligand-Induced Ubiquitination and Stability of the Insulin-Like Growth Factor I Receptor. Molecular and Cellular Biology, 2003, 23, 3363-3372.	1.1	245
45	Agonist-promoted Ubiquitination of the G Protein-coupled Receptor CXCR4 Mediates Lysosomal Sorting. Journal of Biological Chemistry, 2001, 276, 45509-45512.	1.6	419
46	Cloning and characterization of additional members of the G protein-coupled receptor family. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1490, 311-323.	2.4	44
47	Trafficking of the HIV coreceptor CXCR4: Role of arrestins and identification of residues in the C-terminal tail that mediate receptor internalization Journal of Biological Chemistry, 2000, 275, 25876.	1.6	16
48	Novel GPCRs and their endogenous ligands: expanding the boundaries of physiology and pharmacology. Trends in Pharmacological Sciences, 1999, 20, 370-375.	4.0	124
49	Discovery of Three Novel Orphan G-Protein-Coupled Receptors. Genomics, 1999, 56, 12-21.	1.3	69
50	Discovery of Three Novel G-Protein-Coupled Receptor Genes. Genomics, 1998, 47, 310-313.	1.3	271
51	Cloning Genes Encoding Receptors Related to Chemoattractant Receptors. Genomics, 1998, 50, 281-286.	1.3	21
52	Cloning and chromosomal mapping of four putative novel human G-protein-coupled receptor genes. Gene, 1997, 187, 75-81.	1.0	45
53	A novel gene codes for a putative G protein-coupled receptor with an abundant expression in brain. FEBS Letters, 1996, 394, 325-329.	1.3	47
54	A Novel Human Gene Encoding a G-Protein-Coupled Receptor (GPR15) Is Located on Chromosome 3. Genomics, 1996, 32, 462-465.	1.3	61

#	Article	IF	CITATIONS
55	Isolation of Three Novel Human Genes Encoding G Protein-Coupled Receptors. DNA and Cell Biology, 1995, 14, 25-35.	0.9	86
56	Cloning, Expression, and Chromosomal Localization of the Human Uridine Nucleotide Receptor Gene. Journal of Biological Chemistry, 1995, 270, 30845-30848.	1.6	172
57	The Human Dopamine D5 Receptor Gene: Cloning and Characterization of the 5'-Flanking and Promoter Region. Biochemistry, 1995, 34, 5960-5970.	1.2	65
58	Two gene duplication events in the human and primate dopamine D5 receptor gene family. Gene, 1995, 154, 153-158.	1.0	22
59	The Cloning and Chromosomal Mapping of Two Novel Human Opioid-Somatostatin-like Receptor Genes, GPR7 and GPR8, Expressed in Discrete Areas of the Brain. Genomics, 1995, 28, 84-91.	1.3	122
60	Cloning and Chromosomal Mapping of Three Novel Genes, GPR9, GPR10, and GPR14, Encoding Receptors Related to Interleukin 8, Neuropeptide Y, and Somatostatin Receptors. Genomics, 1995, 29, 335-344.	1.3	185
61	Cloning of Human Genes Encoding Novel G Protein-Coupled Receptors. Genomics, 1994, 23, 609-618.	1.3	138
62	An Alu sequence interupts a human 5-hydroxytryptamine1D receptor pseudogene. Gene, 1993, 124, 295-301.	1.0	20
63	Transcription of a human dopamine D5 pseudogene. Biochemical and Biophysical Research Communications, 1991, 181, 16-21.	1.0	39