Federico Iribarne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11968346/publications.pdf

Version: 2024-02-01

30	830	17 h-index	29
papers	citations		g-index
30	30	30	1064
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adsorption of organic molecules on graphene and fluorographene: An unresolved discrepancy between experiment and theory. International Journal of Quantum Chemistry, 2021, 121, e26605.	2.0	4
2	On the electronic properties of defective graphene buffer layer on 6H–SiC(0001). Computational Condensed Matter, 2021, 26, e00538.	2.1	1
3	Elucidating the electronic and magnetic properties of epitaxial graphene grown on SiC with a defective buffer layer. Journal of Materials Science, 2021, 56, 11386-11401.	3.7	1
4	Reduction chemistry of hexagonal boron nitride sheets and graphene: a comparative study on the effect of alkali atom doping on their chemical reactivity. New Journal of Chemistry, 2020, 44, 5725-5730.	2.8	9
5	Comparative study of the chemical reactivity of graphene and boron nitride sheets. Computational and Theoretical Chemistry, 2019, 1164, 112538.	2.5	9
6	Cycloaddition reactions on epitaxial graphene. New Journal of Chemistry, 2019, 43, 11251-11257.	2.8	7
7	New Approach to Accomplish the Covalent Functionalization of Boron Nitride Nanosheets: Cycloaddition Reactions. Journal of Physical Chemistry C, 2018, 122, 18583-18587.	3.1	19
8	On the band gaps and effective masses of mono and dual doped monolayer graphene. Computational Materials Science, 2017, 137, 20-29.	3.0	9
9	Cycloaddition Reactions between Graphene and Fluorinated Maleimides. Journal of Physical Chemistry C, 2017, 121, 13218-13222.	3.1	10
10	The effect of the dopant nature on the reactivity, interlayer bonding and electronic properties of dual doped bilayer graphene. Physical Chemistry Chemical Physics, 2016, 18, 24693-24703.	2.8	20
11	Dual doped monolayer and bilayer graphene: The case of 4p and 2p elements. Chemical Physics Letters, 2016, 658, 152-157.	2.6	20
12	Buckycatcher polymer versus fullerene-buckycatcher complex: Which is stronger?. International Journal of Quantum Chemistry, 2015, 115, 1668-1672.	2.0	8
13	Theoretical investigation of the 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (exTTF) dimer. Structural Chemistry, 2015, 26, 171-176.	2.0	9
14	Strong N-Doped Graphene: The Case of of Physical Chemistry C, 2015, 119, 15103-15111.	3.1	14
15	Hydrogen storage in doped biphenylene based sheets. Computational and Theoretical Chemistry, 2015, 1062, 30-35.	2.5	48
16	Theoretical characterization of sulfur and nitrogen dual-doped graphene. Computational and Theoretical Chemistry, 2014, 1049, 13-19.	2.5	80
17	Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene. Chemical Physics, 2014, 430, 1-6.	1.9	22
18	C2V or C6V: Which is the most stable structure of the benzene–lithium complex?. Chemical Physics Letters, 2013, 573, 15-18.	2.6	21

#	Article	IF	CITATION
19	Comparative Study of Defect Reactivity in Graphene. Journal of Physical Chemistry C, 2013, 117, 19048-19055.	3.1	149
20	[2 + 2] Cycloadditions onto graphene. Journal of Materials Chemistry, 2012, 22, 5470.	6.7	43
21	How is the stacking interaction of bilayer graphene affected by the presence of defects?. Computational and Theoretical Chemistry, 2012, 995, 1-7.	2.5	18
22	Cooperative behavior in functionalized graphene: Explaining the occurrence of 1,3 cycloaddition of azomethine ylides onto graphene. Chemical Physics Letters, 2012, 550, 111-117.	2.6	34
23	A Firstâ€Principles Study on the Interaction between Alkyl Radicals and Graphene. Chemistry - A European Journal, 2012, 18, 7568-7574.	3.3	37
24	Monolayer and Bilayer Graphene Functionalized with Nitrene Radicals. Journal of Physical Chemistry C, 2011, 115, 195-203.	3.1	53
25	Addition of sulfur radicals to fullerenes. International Journal of Quantum Chemistry, 2011, 111, 4266-4275.	2.0	6
26	On the applicability of cluster models to study the chemical reactivity of carbon nanotubes. Journal of Computational Chemistry, 2011, 32, 2397-2403.	3.3	6
27	Thiophene adsorption on Single Wall Carbon Nanotubes and graphene. Computational and Theoretical Chemistry, 2010, 957, 114-119.	1.5	41
28	The 1,3 dipolar cycloaddition of azomethine ylides to graphene, single wall carbon nanotubes, and C60. International Journal of Quantum Chemistry, 2010, 110, 1764-1771.	2.0	48
29	On the hydrogen addition to graphene. Computational and Theoretical Chemistry, 2009, 907, 93-103.	1.5	57
20	Hydrogenated double well carbon panetubes, Journal of Chemical Physics, 2009, 130, 194704	2.0	97