Oliver Fenwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1196729/publications.pdf

Version: 2024-02-01

186265 214800 2,453 78 28 47 citations h-index g-index papers 80 80 80 4137 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metal–biomolecule frameworks (BioMOFs): a novel approach for â€ægreen―optoelectronic applications. Chemical Communications, 2022, 58, 677-680.	4.1	7
2	Significant interlayer coupling in bilayer graphene and double-walled carbon nanotubes: A refinement of obtaining strain in low-dimensional materials. Physical Review B, 2022, 105, .	3.2	O
3	High Responsivity Circular Polarized Light Detectors based on Quasi Two-Dimensional Chiral Perovskite Films. ACS Nano, 2022, 16, 2682-2689.	14.6	53
4	Waferâ€Scale Graphene Anodes Replace Indium Tin Oxide in Organic Lightâ€Emitting Diodes (Advanced) Tj ETQ	q0.0.0 rgE 7.3	BT /Overlock 1
5	High thermoelectric performance based on CsSnI ₃ thin films with improved stability. Journal of Materials Chemistry A, 2022, 10, 7020-7028.	10.3	10
6	Waferâ€Scale Graphene Anodes Replace Indium Tin Oxide in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, 2101675.	7.3	11
7	Graphene on silicon: Effects of the silicon surface orientation on the work function and carrier density of graphene. Physical Review B, 2022, 105, .	3.2	2
8	Facile and Low-Cost Fabrication of Cu/Zn/Sn-Based Ternary and Quaternary Chalcogenides Thermoelectric Generators. ACS Applied Energy Materials, 2022, 5, 5909-5918.	5.1	11
9	Novel scalable aerosol-assisted CVD route for perovskite solar cells. Materials Advances, 2021, 2, 1606-1612.	5.4	10
10	Dye–catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers. RSC Advances, 2021, 11, 5311-5319.	3.6	4
11	All-Oxide p–n Junction Thermoelectric Generator Based on SnO <i>_x</i> and ZnO Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 35187-35196.	8.0	21
12	Thermoelectric Materials: Current Status and Future Challenges. Frontiers in Electronic Materials, 2021, 1 , .	3.1	41
13	Thermoelectric properties of CZTS thin films: effect of Cu–Zn disorder. Physical Chemistry Chemical Physics, 2021, 23, 13148-13158.	2.8	15
14	High thermal conductivity states and enhanced figure of merit in aligned polymer thermoelectric materials. Journal of Materials Chemistry A, 2021, 9, 16065-16075.	10.3	17
15	Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519.	12.2	21
16	Two-Step Synthesis of Bismuth-Based Hybrid Halide Perovskite Thin-Films. Materials, 2021, 14, 7827.	2.9	3
17	Xâ€Rayâ€Induced Growth Dynamics of Luminescent Silver Clusters in Zeolites. Small, 2020, 16, e2002063.	10.0	14
18	Full Thermoelectric Characterization of Stoichiometric Electrodeposited Thin Film Tin Selenide (SnSe). ACS Applied Materials & Samp; Interfaces, 2020, 12, 28232-28238.	8.0	17

#	Article	IF	Citations
19	Controlling the Thermoelectric Properties of Organometallic Coordination Polymers via Ligand Design. Advanced Functional Materials, 2020, 30, 2003106.	14.9	15
20	Unexpected softness of bilayer graphene and softening of A-A stacked graphene layers. Physical Review B, 2020, 101, .	3.2	7
21	Nitrogen-Doped Carbon Dots/TiO ₂ Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 2020, 3, 3371-3381.	5.0	71
22	Growth and Characterization of Cu2Zn1â^'xFexSnS4 Thin Films for Photovoltaic Applications. Materials, 2020, 13, 1471.	2.9	10
23	Substitutional doping of hybrid organic–inorganic perovskite crystals for thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 13594-13599.	10.3	51
24	Polymorphism in N,N′-dialkyl-naphthalene diimides. Journal of Materials Chemistry C, 2020, 8, 3097-3112.	5.5	18
25	Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells. Metals, 2020, 10, 14.	2.3	9
26	High charge carrier mobility in solution processed one-dimensional lead halide perovskite single crystals and their application as photodetectors. Nanoscale, 2020, 12, 9688-9695.	5.6	37
27	Flexible and Stretchable Selfâ€Powered Multiâ€Sensors Based on the Nâ€Type Thermoelectric Response of Polyurethane/Na <i></i> <fub><fub> Naterials, 2019, 5, 1900582.</fub></fub>	5.1	28
28	Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1509-1518.	10.3	25
29	Mapping Subâ€Surface Structure of Thin Films in Three Dimensions with an Optical Nearâ€Field. Advanced Theory and Simulations, 2019, 2, 1900033.	2.8	1
30	Unusual Thermal Boundary Resistance in Halide Perovskites: A Way To Tune Ultralow Thermal Conductivity for Thermoelectrics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47507-47515.	8.0	24
31	Enhanced control of self-doping in halide perovskites for improved thermoelectric performance. Nature Communications, 2019, 10, 5750.	12.8	129
32	Oxacycleâ∈Fused [1]Benzothieno[3,2â∈∢i>b][1]benzothiophene Derivatives: Synthesis, Electronic Structure, Electrochemical Properties, Ionisation Potential, and Crystal Structure. ChemPlusChem, 2019, 84, 1263-1269.	2.8	6
33	Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging. Materials Horizons, 2018, 5, 423-428.	12.2	55
34	Toward Stretchable Selfâ€Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Advanced Functional Materials, 2018, 28, 1704285.	14.9	171
35	Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity. Advanced Materials, 2018, 30, e1801357.	21.0	126
36	6.14 Organic Thermoelectric Composites Materials. , 2018, , 408-430.		8

#	Article	IF	Citations
37	Non-conventional charge transport in organic semiconductors: magnetoresistance and thermoelectricity. Molecular Systems Design and Engineering, 2017, 2, 47-56.	3.4	3
38	Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters. Journal of Materials Chemistry C, 2016, 4, 4259-4268.	5.5	22
39	Design, synthesis, chemical stability, packing, cyclic voltammetry, ionisation potential, and charge transport of [1]benzothieno[3,2-b][1]benzothiophene derivatives. Journal of Materials Chemistry C, 2016, 4, 4863-4879.	5.5	33
40	Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nature Materials, 2016 , 15 , 1017 - 1022 .	27. 5	153
41	Luminescent Neutral Cu(I) Complexes: Synthesis, Characterization and Application in Solution-Processed OLED. ECS Journal of Solid State Science and Technology, 2016, 5, R83-R90.	1.8	22
42	Modulating the charge injection in organic field-effect transistors: fluorinated oligophenyl self-assembled monolayers for high work function electrodes. Journal of Materials Chemistry C, 2015, 3, 3007-3015.	5.5	62
43	Luminescent Properties of a Waterâ€Soluble Conjugated Polymer Incorporating Grapheneâ€Oxide Quantum Dots. ChemPhysChem, 2015, 16, 1258-1262.	2.1	20
44	Thia- and selena-diazole containing polymers for near-infrared light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 2792-2797.	5.5	40
45	Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111). Nanoscale, 2014, 6, 8969-8977.	5.6	31
46	Multifunctional materials for OFETs, LEFETs and NIR PLEDs. Journal of Materials Chemistry C, 2014, 2, 5133-5141.	5.5	38
47	Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzeneâ€Based Selfâ€Assembled Monolayer. Advanced Materials, 2013, 25, 432-436.	21.0	93
48	Straightforward access to diketopyrrolopyrrole (DPP) dimers. Dyes and Pigments, 2013, 97, 198-208.	3.7	38
49	Polymorphism, Fluorescence, and Optoelectronic Properties of a Borazine Derivative. Chemistry - A European Journal, 2013, 19, 7771-7779.	3.3	49
50	Nearâ€Infrared Polymer Lightâ€Emitting Diodes Based on Lowâ€Energy Gap Oligomers Copolymerized into a Highâ€Gap Polymer Host. Macromolecular Rapid Communications, 2013, 34, 990-996.	3.9	34
51	Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene. APL Materials, $2013,1,\ldots$	5.1	32
52	The influence of the substrate thermal conductivity on scanning thermochemical lithography. Journal of Applied Physics, 2012, 111, .	2.5	5
53	Cross-linking of a poly(3,4-ethylene dioxythiophene):(polystyrene sulfonic acid) hole injection layer with a bis-azide salt and the effect of atmospheric processing conditions on device properties. Applied Physics Letters, 2012, 100, 053309.	3.3	10
54	Efficient light confinement with nanostructured optical microfiber tips. Optics Communications, 2012, 285, 4688-4697.	2.1	5

#	Article	IF	Citations
55	Sub-wavelength focusing of high intensities in microfibre tips. , 2012, , .		O
56	Linear and Cyclic Porphyrin Hexamers as Near-Infrared Emitters in Organic Light-Emitting Diodes. Nano Letters, 2011, 11, 2451-2456.	9.1	107
57	Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 14302.	2.8	61
58	Dual functions of a novel low-gap polymer for near infra-red photovoltaics and light-emitting diodes. Chemical Communications, 2011, 47, 8820.	4.1	31
59	Local Surface Potential of π onjugated Nanostructures by Kelvin Probe Force Microscopy: Effect of the Sampling Depth. Small, 2011, 7, 634-639.	10.0	20
60	Nonâ€conventional Processing and Postâ€processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics. Advanced Functional Materials, 2011, 21, 1279-1295.	14.9	81
61	Organic Electronics: Non-conventional Processing and Post-processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics (Adv. Funct. Mater. 7/2011). Advanced Functional Materials, 2011, 21, 1206-1206.	14.9	1
62	White Electroluminescence by Supramolecular Control of Energy Transfer in Blends of Organicâ€Soluble Encapsulated Polyfluorenes. Advanced Functional Materials, 2010, 20, 272-280.	14.9	60
63	Highâ€Resolution Scanning Nearâ€Field Optical Lithography of Conjugated Polymers. Advanced Functional Materials, 2010, 20, 2842-2847.	14.9	38
64	Conjugated Polymers: High-Resolution Scanning Near-Field Optical Lithography of Conjugated Polymers (Adv. Funct. Mater. 17/2010). Advanced Functional Materials, 2010, 20, n/a-n/a.	14.9	0
65	Interfacial dipole dynamics of light-emitting diodes incorporating a poly(amidoamine) dendrimer monolayer. Applied Physics Letters, 2010, 97, 043304.	3.3	9
66	White luminescence from single-layer devices of nonresonant polymer blends. Applied Physics Letters, 2010, 96, 213301.	3.3	9
67	Synthesis, Characterization, and Surface Initiated Polymerization of Carbazole Functionalized Isocyanides. Chemistry of Materials, 2010, 22, 2597-2607.	6.7	27
68	Thermochemical nanopatterning of organic semiconductors. Nature Nanotechnology, 2009, 4, 664-668.	31.5	104
69	Tuning Intrachain versus Interchain Photophysics via Control of the Threading Ratio of Conjugated Polyrotaxanes. Nano Letters, 2008, 8, 4546-4551.	9.1	64
70	Photoacid cross-linkable polyfluorenes for optoelectronics applications. Synthetic Metals, 2008, 158, 643-653.	3.9	24
71	Shape dependent thermal effects in apertured fiber probes for scanning near-field optical microscopy. Journal of Applied Physics, 2006, 99, 084303.	2.5	14
72	Observation of tip-to-sample heat transfer in near-field optical microscopy using metal-coated fiber probes. Applied Physics Letters, 2005, 86, 203109.	3.3	15

#	ARTICLE	IF	CITATION
73	Optical probing of sample heating in scanning near-field experiments with apertured probes. Applied Physics Letters, 2005, 86, 011102.	3.3	22
74	Modelling topographical artifacts in scanning near-field optical microscopy. Synthetic Metals, 2004, 147, 171-173.	3.9	16
75	Investigation of heating effects in near-field experiments with luminescent organic semiconductors. Synthetic Metals, 2004, 147, 165-169.	3.9	5
76	Halide Perovskites as Thermoelectric Materials. , 0, , .		0
77	Quasi-Zero Dimensional Halide Perovskite Derivates: Synthesis, Status, and Opportunity. Frontiers in Electronics, 0, 2, .	3.2	4
78	Critical analysis of self-doping and water-soluble n-type organic semiconductors: structures and mechanisms. Journal of Materials Chemistry $C,0,\cdot$	5.5	3