Oliver Fenwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1196729/publications.pdf

Version: 2024-02-01

186265 214800 2,453 78 28 47 citations h-index g-index papers 80 80 80 4137 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Toward Stretchable Selfâ€Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Advanced Functional Materials, 2018, 28, 1704285.	14.9	171
2	Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nature Materials, 2016, 15, 1017-1022.	27.5	153
3	Enhanced control of self-doping in halide perovskites for improved thermoelectric performance. Nature Communications, 2019, 10, 5750.	12.8	129
4	Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity. Advanced Materials, 2018, 30, e1801357.	21.0	126
5	Linear and Cyclic Porphyrin Hexamers as Near-Infrared Emitters in Organic Light-Emitting Diodes. Nano Letters, 2011, 11, 2451-2456.	9.1	107
6	Thermochemical nanopatterning of organic semiconductors. Nature Nanotechnology, 2009, 4, 664-668.	31.5	104
7	Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzeneâ€Based Selfâ€Assembled Monolayer. Advanced Materials, 2013, 25, 432-436.	21.0	93
8	Nonâ€conventional Processing and Postâ€processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics. Advanced Functional Materials, 2011, 21, 1279-1295.	14.9	81
9	Nitrogen-Doped Carbon Dots/TiO ₂ Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 2020, 3, 3371-3381.	5.0	71
10	Tuning Intrachain versus Interchain Photophysics via Control of the Threading Ratio of Conjugated Polyrotaxanes. Nano Letters, 2008, 8, 4546-4551.	9.1	64
11	Modulating the charge injection in organic field-effect transistors: fluorinated oligophenyl self-assembled monolayers for high work function electrodes. Journal of Materials Chemistry C, 2015, 3, 3007-3015.	5.5	62
12	Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 14302.	2.8	61
13	White Electroluminescence by Supramolecular Control of Energy Transfer in Blends of Organicâ€Soluble Encapsulated Polyfluorenes. Advanced Functional Materials, 2010, 20, 272-280.	14.9	60
14	Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging. Materials Horizons, 2018, 5, 423-428.	12.2	55
15	High Responsivity Circular Polarized Light Detectors based on Quasi Two-Dimensional Chiral Perovskite Films. ACS Nano, 2022, 16, 2682-2689.	14.6	53
16	Substitutional doping of hybrid organic–inorganic perovskite crystals for thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 13594-13599.	10.3	51
17	Polymorphism, Fluorescence, and Optoelectronic Properties of a Borazine Derivative. Chemistry - A European Journal, 2013, 19, 7771-7779.	3.3	49
18	Thermoelectric Materials: Current Status and Future Challenges. Frontiers in Electronic Materials, 2021, 1, .	3.1	41

#	Article	IF	Citations
19	Thia- and selena-diazole containing polymers for near-infrared light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 2792-2797.	5.5	40
20	Highâ€Resolution Scanning Nearâ€Field Optical Lithography of Conjugated Polymers. Advanced Functional Materials, 2010, 20, 2842-2847.	14.9	38
21	Straightforward access to diketopyrrolopyrrole (DPP) dimers. Dyes and Pigments, 2013, 97, 198-208.	3.7	38
22	Multifunctional materials for OFETs, LEFETs and NIR PLEDs. Journal of Materials Chemistry C, 2014, 2, 5133-5141.	5. 5	38
23	High charge carrier mobility in solution processed one-dimensional lead halide perovskite single crystals and their application as photodetectors. Nanoscale, 2020, 12, 9688-9695.	5.6	37
24	Nearâ€Infrared Polymer Lightâ€Emitting Diodes Based on Lowâ€Energy Gap Oligomers Copolymerized into a Highâ€Gap Polymer Host. Macromolecular Rapid Communications, 2013, 34, 990-996.	3.9	34
25	Design, synthesis, chemical stability, packing, cyclic voltammetry, ionisation potential, and charge transport of [1]benzothieno[3,2-b][1]benzothiophene derivatives. Journal of Materials Chemistry C, 2016, 4, 4863-4879.	5.5	33
26	Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene. APL Materials, 2013, 1 , .	5.1	32
27	Dual functions of a novel low-gap polymer for near infra-red photovoltaics and light-emitting diodes. Chemical Communications, 2011, 47, 8820.	4.1	31
28	Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111). Nanoscale, 2014, 6, 8969-8977.	5.6	31
29	Flexible and Stretchable Selfâ€Powered Multiâ€Sensors Based on the Nâ€Type Thermoelectric Response of Polyurethane/Na <i></i> (Niâ€ett) <i>_n</i> Composites. Advanced Electronic Materials, 2019, 5, 1900582.	5.1	28
30	Synthesis, Characterization, and Surface Initiated Polymerization of Carbazole Functionalized Isocyanides. Chemistry of Materials, 2010, 22, 2597-2607.	6.7	27
31	Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1509-1518.	10.3	25
32	Photoacid cross-linkable polyfluorenes for optoelectronics applications. Synthetic Metals, 2008, 158, 643-653.	3.9	24
33	Unusual Thermal Boundary Resistance in Halide Perovskites: A Way To Tune Ultralow Thermal Conductivity for Thermoelectrics. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 47507-47515.	8.0	24
34	Optical probing of sample heating in scanning near-field experiments with apertured probes. Applied Physics Letters, 2005, 86, 011102.	3.3	22
35	Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters. Journal of Materials Chemistry C, 2016, 4, 4259-4268.	5.5	22
36	Luminescent Neutral Cu(I) Complexes: Synthesis, Characterization and Application in Solution-Processed OLED. ECS Journal of Solid State Science and Technology, 2016, 5, R83-R90.	1.8	22

3

#	Article	IF	CITATIONS
37	All-Oxide p–n Junction Thermoelectric Generator Based on SnO <i></i> and ZnO Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 35187-35196.	8.0	21
38	Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519.	12.2	21
39	Local Surface Potential of Ï€â€Conjugated Nanostructures by Kelvin Probe Force Microscopy: Effect of the Sampling Depth. Small, 2011, 7, 634-639.	10.0	20
40	Luminescent Properties of a Waterâ€Soluble Conjugated Polymer Incorporating Grapheneâ€Oxide Quantum Dots. ChemPhysChem, 2015, 16, 1258-1262.	2.1	20
41	Polymorphism in N,N′-dialkyl-naphthalene diimides. Journal of Materials Chemistry C, 2020, 8, 3097-3112.	5.5	18
42	Full Thermoelectric Characterization of Stoichiometric Electrodeposited Thin Film Tin Selenide (SnSe). ACS Applied Materials & Samp; Interfaces, 2020, 12, 28232-28238.	8.0	17
43	High thermal conductivity states and enhanced figure of merit in aligned polymer thermoelectric materials. Journal of Materials Chemistry A, 2021, 9, 16065-16075.	10.3	17
44	Modelling topographical artifacts in scanning near-field optical microscopy. Synthetic Metals, 2004, 147, 171-173.	3.9	16
45	Observation of tip-to-sample heat transfer in near-field optical microscopy using metal-coated fiber probes. Applied Physics Letters, 2005, 86, 203109.	3.3	15
46	Controlling the Thermoelectric Properties of Organometallic Coordination Polymers via Ligand Design. Advanced Functional Materials, 2020, 30, 2003106.	14.9	15
47	Thermoelectric properties of CZTS thin films: effect of Cu–Zn disorder. Physical Chemistry Chemical Physics, 2021, 23, 13148-13158.	2.8	15
48	Shape dependent thermal effects in apertured fiber probes for scanning near-field optical microscopy. Journal of Applied Physics, 2006, 99, 084303.	2.5	14
49	Xâ€Rayâ€Induced Growth Dynamics of Luminescent Silver Clusters in Zeolites. Small, 2020, 16, e2002063.	10.0	14
50	Waferâ€Scale Graphene Anodes Replace Indium Tin Oxide in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, 2101675.	7.3	11
51	Facile and Low-Cost Fabrication of Cu/Zn/Sn-Based Ternary and Quaternary Chalcogenides Thermoelectric Generators. ACS Applied Energy Materials, 2022, 5, 5909-5918.	5.1	11
52	Cross-linking of a poly(3,4-ethylene dioxythiophene):(polystyrene sulfonic acid) hole injection layer with a bis-azide salt and the effect of atmospheric processing conditions on device properties. Applied Physics Letters, 2012, 100, 053309.	3.3	10
53	Growth and Characterization of Cu2Zn1â^'xFexSnS4 Thin Films for Photovoltaic Applications. Materials, 2020, 13, 1471.	2.9	10
54	Novel scalable aerosol-assisted CVD route for perovskite solar cells. Materials Advances, 2021, 2, 1606-1612.	5.4	10

#	Article	IF	CITATIONS
55	High thermoelectric performance based on CsSnI ₃ thin films with improved stability. Journal of Materials Chemistry A, 2022, 10, 7020-7028.	10.3	10
56	Interfacial dipole dynamics of light-emitting diodes incorporating a poly(amidoamine) dendrimer monolayer. Applied Physics Letters, 2010, 97, 043304.	3.3	9
57	White luminescence from single-layer devices of nonresonant polymer blends. Applied Physics Letters, 2010, 96, 213301.	3.3	9
58	Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells. Metals, 2020, 10, 14.	2.3	9
59	6.14 Organic Thermoelectric Composites Materials. , 2018, , 408-430.		8
60	Unexpected softness of bilayer graphene and softening of A-A stacked graphene layers. Physical Review B, 2020, 101, .	3.2	7
61	Metal–biomolecule frameworks (BioMOFs): a novel approach for â€ægreen―optoelectronic applications. Chemical Communications, 2022, 58, 677-680.	4.1	7
62	Oxacycleâ€Fused [1]Benzothieno[3,2â€∢i>b⟨li>][1]benzothiophene Derivatives: Synthesis, Electronic Structure, Electrochemical Properties, Ionisation Potential, and Crystal Structure. ChemPlusChem, 2019, 84, 1263-1269.	2.8	6
63	Investigation of heating effects in near-field experiments with luminescent organic semiconductors. Synthetic Metals, 2004, 147, 165-169.	3.9	5
64	The influence of the substrate thermal conductivity on scanning thermochemical lithography. Journal of Applied Physics, 2012, 111, .	2.5	5
65	Efficient light confinement with nanostructured optical microfiber tips. Optics Communications, 2012, 285, 4688-4697.	2.1	5
66	Dye–catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers. RSC Advances, 2021, 11, 5311-5319.	3.6	4
67	Quasi-Zero Dimensional Halide Perovskite Derivates: Synthesis, Status, and Opportunity. Frontiers in Electronics, 0, 2, .	3.2	4
68	Non-conventional charge transport in organic semiconductors: magnetoresistance and thermoelectricity. Molecular Systems Design and Engineering, 2017, 2, 47-56.	3.4	3
69	Two-Step Synthesis of Bismuth-Based Hybrid Halide Perovskite Thin-Films. Materials, 2021, 14, 7827.	2.9	3
70	Critical analysis of self-doping and water-soluble n-type organic semiconductors: structures and mechanisms. Journal of Materials Chemistry C, 0, , .	5 . 5	3
71	Graphene on silicon: Effects of the silicon surface orientation on the work function and carrier density of graphene. Physical Review B, 2022, 105, .	3.2	2
72	Organic Electronics: Non-conventional Processing and Post-processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics (Adv. Funct. Mater. 7/2011). Advanced Functional Materials, 2011, 21, 1206-1206.	14.9	1

#	Article	IF	CITATIONS
73	Mapping Subâ€Surface Structure of Thin Films in Three Dimensions with an Optical Nearâ€Field. Advanced Theory and Simulations, 2019, 2, 1900033.	2.8	1
74	Conjugated Polymers: High-Resolution Scanning Near-Field Optical Lithography of Conjugated Polymers (Adv. Funct. Mater. 17/2010). Advanced Functional Materials, 2010, 20, n/a-n/a.	14.9	0
7 5	Sub-wavelength focusing of high intensities in microfibre tips. , 2012, , .		O
76	Halide Perovskites as Thermoelectric Materials. , 0, , .		0
77	Significant interlayer coupling in bilayer graphene and double-walled carbon nanotubes: A refinement of obtaining strain in low-dimensional materials. Physical Review B, 2022, 105, .	3.2	O

Waferâ€Scale Graphene Anodes Replace Indium Tin Oxide in Organic Lightâ€Emitting Diodes (Advanced) Tj ETQq0,0,0 rgBT /0 verlock 1