
## Bin Cao

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11965904/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Suzuki–Miyaura Coupling Reaction by PdII-Catalyzed Aromatic CH Bond Activation Directed by<br>anN-Alkyl Acetamino Group. Angewandte Chemie - International Edition, 2007, 46, 5554-5558. | 13.8 | 302       |
| 2  | Switchable Antimicrobial and Antifouling Hydrogels with Enhanced Mechanical Properties. Advanced<br>Healthcare Materials, 2013, 2, 1096-1102.                                             | 7.6  | 130       |
| 3  | ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood–brain barrier. Journal of Nanobiotechnology, 2018, 16, 13.   | 9.1  | 96        |
| 4  | Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials, 2019, 225, 119519.                                                 | 11.4 | 83        |
| 5  | Electroactive poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) with controllable antifouling and antimicrobial properties. Chemical Science, 2016, 7, 1976-1981.                   | 7.4  | 66        |
| 6  | Recent advances of zwitterionic carboxybetaine materials and their derivatives. Journal of<br>Biomaterials Science, Polymer Edition, 2014, 25, 1502-1513.                                 | 3.5  | 65        |
| 7  | The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer. Biomaterials, 2013, 34, 7592-7600.                           | 11.4 | 64        |
| 8  | Zwitteration of dextran: a facile route to integrate antifouling, switchability and optical transparency into natural polymers. Chemical Communications, 2014, 50, 3234-3237.             | 4.1  | 61        |
| 9  | Integrated zwitterionic conjugated poly(carboxybetaine thiophene) as a new biomaterial platform.<br>Chemical Science, 2015, 6, 782-788.                                                   | 7.4  | 42        |
| 10 | Dextran–Peptide Hybrid for Efficient Gene Delivery. Langmuir, 2014, 30, 5202-5208.                                                                                                        | 3.5  | 40        |
| 11 | Self-assembly of halogen substituted phenazines. Journal of Materials Chemistry, 2010, 20, 867-873.                                                                                       | 6.7  | 34        |
| 12 | Selective Gene Delivery to Cancer Cells Using an Integrated Cationic Amphiphilic Peptide. Langmuir, 2012, 28, 16126-16132.                                                                | 3.5  | 33        |
| 13 | New Antifouling Silica Hydrogel. Langmuir, 2012, 28, 9700-9706.                                                                                                                           | 3.5  | 28        |
| 14 | Cholesterol-Peptide Hybrids to Form Liposome-Like Vesicles for Gene Delivery. PLoS ONE, 2013, 8, e54460.                                                                                  | 2.5  | 28        |
| 15 | Structure–Function Relationships of a Tertiary Amine-Based Polycarboxybetaine. Langmuir, 2015, 31,<br>9965-9972.                                                                          | 3.5  | 23        |
| 16 | Facile Synthesis of a 3,4-Ethylene-Dioxythiophene (EDOT) Derivative for Ease of Bio-Functionalization of the Conducting Polymer PEDOT. Frontiers in Chemistry, 2019, 7, 178.              | 3.6  | 18        |
| 17 | Tuning the electronic properties of phenazine and bisphenazine derivatives: a theoretical and experimental investigation. Physical Chemistry Chemical Physics, 2010, 12, 12727.           | 2.8  | 14        |
| 18 | A naturally derived dextran–peptide vector for microRNA antagomir delivery. RSC Advances, 2015, 5,<br>28019-28022.                                                                        | 3.6  | 8         |

Βιν ζαο

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Versatile Microparticle-Based Immunoaggregation Assay for Macromolecular Biomarker Detection and Quantification. PLoS ONE, 2015, 10, e0115046.                                            | 2.5  | 5         |
| 20 | Receptor Mapping by Comparative Molecular Field Analysis of Phospholipase A <sub>2</sub> Inhibitors.<br>Journal of the Chinese Chemical Society, 1995, 42, 739-744.                         | 1.4  | 1         |
| 21 | Suzuki–Miyaura Coupling Reaction by PdII-Catalyzed Aromatic Cĩ£¿H Bond Activation Directed by<br>anN-Alkyl Acetamino Group. Angewandte Chemie - International Edition, 2007, 46, 7730-7730. | 13.8 | 0         |