Xilin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11965135/publications.pdf Version: 2024-02-01

XILIN CHEN

#	Article	IF	CITATIONS
1	Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. Journal of Power Sources, 2016, 318, 170-177.	4.0	186
2	The Effect of Entropy and Enthalpy Changes on the Thermal Behavior of Li-Mn-Rich Layered Composite Cathode Materials. Journal of the Electrochemical Society, 2016, 163, A571-A577.	1.3	19
3	In situ 7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process. Journal of Power Sources, 2016, 304, 51-59.	4.0	20
4	Enhanced performance of Li LiFePO4 cells using CsPF6 as an electrolyte additive. Journal of Power Sources, 2015, 293, 1062-1067.	4.0	29
5	Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Letters, 2014, 14, 6889-6896.	4.5	326
6	<i>In-Situ</i> Electrochemical Transmission Electron Microscopy for Battery Research. Microscopy and Microanalysis, 2014, 20, 484-492.	0.2	45
7	Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid–Electrolyte Interphase Film on Silicon Anode. ChemSusChem, 2014, 7, 549-554.	3.6	126
8	A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. Journal of Materials Chemistry A, 2014, 2, 3430.	5.2	197
9	Effects of Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of Physical Chemistry C, 2014, 118, 4043-4049.	1.5	117
10	Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. Journal of Materials Chemistry A, 2014, 2, 2346.	5.2	85
11	Lithium metal anodes for rechargeable batteries. Energy and Environmental Science, 2014, 7, 513-537.	15.6	3,665
12	Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 2014, 5, 4105.	5.8	1,160
13	Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications. Scientific Reports, 2014, 4, 3790.	1.6	25
14	An Electrically Switchable Metal-Organic Framework. Scientific Reports, 2014, 4, 6114.	1.6	70
15	Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Nano Letters, 2013, 13, 3909-3914.	4.5	245
16	Demonstration of an Electrochemical Liquid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes. Nano Letters, 2013, 13, 6106-6112.	4.5	265
17	Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. Journal of Power Sources, 2013, 236, 169-174.	4.0	51
18	Surface and structural stabilities of carbon additives in high voltage lithium ion batteries. Journal of Power Sources, 2013, 227, 211-217.	4.0	55

XILIN CHEN

#	Article	IF	CITATIONS
19	Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society, 2013, 135, 4450-4456.	6.6	1,736
20	Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries. Journal of Power Sources, 2013, 242, 736-741.	4.0	24
21	Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. Journal of the Electrochemical Society, 2013, 160, A1894-A1901.	1.3	260
22	Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Physical Chemistry Chemical Physics, 2012, 14, 13515.	1.3	167
23	Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes. Nano Letters, 2012, 12, 4124-4130.	4.5	160
24	Effects of cell positive cans and separators on the performance of high-voltage Li-ion batteries. Journal of Power Sources, 2012, 213, 160-168.	4.0	44
25	Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 11014.	6.7	280
26	Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 12745.	6.7	129
27	Highâ€Performance LiNi _{0.5} Mn _{1.5} O ₄ Spinel Controlled by Mn ³⁺ Concentration and Site Disorder. Advanced Materials, 2012, 24, 2109-2116.	11.1	434
28	3D tin anodes prepared by electrodeposition on a virus scaffold. Journal of Power Sources, 2012, 211, 129-132.	4.0	37
29	Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5ÂV Li-ion battery applications. Journal of Power Sources, 2012, 213, 304-316.	4.0	69
30	Hybrid CFx–Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter. Electrochemistry Communications, 2011, 13, 1344-1344.	2.3	45
31	A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector. Advanced Functional Materials, 2011, 21, 380-387.	7.8	125
32	Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochimica Acta, 2011, 56, 3981-3987.	2.6	374
33	High rate performance of virus enabled 3D n-type Si anodes for lithium-ion batteries. Electrochimica Acta, 2011, 56, 5210-5213.	2.6	45
34	Virus-Enabled Silicon Anode for Lithium-Ion Batteries. ACS Nano, 2010, 4, 5366-5372.	7.3	228
35	Self-assembled Ni/TiO2 nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffolds. Chemical Communications, 2010, 46, 7349.	2.2	60
36	Carbon scaffold structured silicon anodes for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 5035.	6.7	136

XILIN CHEN

#	Article	IF	CITATIONS
37	An Oxide Ion and Proton Co-Ion Conducting Sn[sub 0.9]In[sub 0.1]P[sub 2]O[sub 7] Electrolyte for Intermediate-Temperature Fuel Cells. Journal of the Electrochemical Society, 2008, 155, B1264.	1.3	50
38	Water effect on the conductivity behavior of NH4PO3-based electrolytes for intermediate temperature fuel cells. Electrochimica Acta, 2007, 52, 7835-7840.	2.6	9
39	Solid state protonic conductor NH4PO3–(NH4)2Mn(PO3)4 for intermediate temperature fuel cells. Electrochimica Acta, 2006, 51, 6542-6547.	2.6	18