
James M Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11965048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In Vivo</i> Delivery of M0, M1, and M2 Macrophage Subtypes via Genipin-Cross-Linked Collagen Biotextile. Tissue Engineering - Part A, 2022, 28, 672-684.	3.1	5
2	Mesenchymal Stem Cell Delivery via Topographically Tenoinductive Collagen Biotextile Enhances Regeneration of Segmental Tendon Defects. American Journal of Sports Medicine, 2022, 50, 2281-2291.	4.2	3
3	Sung Wan Kim - Early events in blood/material interactions. Journal of Controlled Release, 2021, 330, 31-35.	9.9	1
4	Genipin guides and sustains the polarization of macrophages to the pro-regenerative M2 subtype via activation of the pSTAT6-PPAR-gamma pathway. Acta Biomaterialia, 2021, 131, 198-210.	8.3	14
5	Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex. Acta Biomaterialia, 2020, 103, 281-292.	8.3	38
6	Biocompatibility and Bioresponse to Biomaterials. , 2019, , 675-694.		6
7	Iron oxide nanoparticles promote vascular endothelial cells survival from oxidative stress by enhancement of autophagy. International Journal of Energy Production and Management, 2019, 6, 221-229.	3.7	21
8	Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling. Biomaterials, 2019, 203, 23-30.	11.4	102
9	Woven collagen biotextiles enable mechanically functional rotator cuff tendon regeneration during repair of segmental tendon defects <i>in vivo</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1864-1876.	3.4	36
10	Lactosylated N-Alkyl polyethylenimine coated iron oxide nanoparticles induced autophagy in mouse dendritic cells. International Journal of Energy Production and Management, 2018, 5, 141-149.	3.7	25
11	Implications of the Acute and Chronic Inflammatory Response and the Foreign Body Reaction to the Immune Response of Implanted Biomaterials. , 2017, , 15-36.		18
12	Future challenges in the <i>inÂvitro</i> and <i>inÂvivo</i> evaluation of biomaterial biocompatibility. International Journal of Energy Production and Management, 2016, 3, 73-77.	3.7	83
13	Journal of Biomedical Materials Research Part A - A New Beginning. Journal of Biomedical Materials Research - Part A, 2016, 104, 7-7.	4.0	0
14	Cell-coating affects tissue integration of synthetic and biologic meshes: comparative analysis of the onlay and underlay mesh positioning in rats. Surgical Endoscopy and Other Interventional Techniques, 2016, 30, 4445-4453.	2.4	12
15	An inÂvivo analysis of Miromesh—a novel porcine liver prosthetic created by perfusion decellularization. Journal of Surgical Research, 2016, 201, 29-37.	1.6	9
16	Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages <i>in vitro</i> : Dependence on material surface properties. Journal of Biomedical Materials Research - Part A, 2015, 103, 1380-1390.	4.0	50
17	Exploiting the inflammatory response on biomaterials research and development. Journal of Materials Science: Materials in Medicine, 2015, 26, 121.	3.6	46
18	Tailoring the Foreign Body Response for <i>In Situ</i> Vascular Tissue Engineering. Tissue Engineering - Part C: Methods, 2015, 21, 436-446.	2.1	26

#	Article	IF	CITATIONS
19	Biomaterials: Factors Favoring Colonization and Infection. , 2014, , 89-109.		20
20	<i>In vivo</i> quantitative and qualitative assessment of foreign body giant cell formation on biomaterials in mice deficient in natural killer lymphocyte subsets, mast cells, or the interleukinâ€4 receptorα and in severe combined immunodeficient mice. Journal of Biomedical Materials Research - Part A, 2014, 102, 2017-2023.	4.0	33
21	Lack of identifiable biologic behavior in a series of porcine mesh explants. Surgery, 2014, 156, 183-189.	1.9	29
22	Adsorbed Fibrinogen Enhances Production of Bone- and Angiogenic-Related Factors by Monocytes/Macrophages. Tissue Engineering - Part A, 2014, 20, 250-263.	3.1	33
23	Tenogenic Induction of Human MSCs by Anisotropically Aligned Collagen Biotextiles. Advanced Functional Materials, 2014, 24, 5762-5770.	14.9	142
24	Methodology of fibroblast and mesenchymal stem cell coating of surgical meshes: A pilot analysis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 797-805.	3.4	18
25	Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomaterialia, 2013, 9, 4513-4524.	8.3	83
26	Biomaterial-Dependent Characteristics of the Foreign Body Response and S. epidermidis Biofilm Interactions. , 2013, , 119-149.		5
27	Effect of surgical wound classification on biologic graft performance in complex hernia repair: An experimental study. Surgery, 2013, 153, 481-492.	1.9	31
28	Inflammation, Wound Healing, and the Foreign-Body Response. , 2013, , 503-512.		18
29	First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip. Science Translational Medicine, 2012, 4, 122ra21.	12.4	360
30	Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 2012, 64, 72-82.	13.7	645
31	Host Response to Long Acting Injections and Implants. , 2012, , 25-55.		4
32	Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials, 2012, 33, 6604-6614.	11.4	151
33	In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 308-317.	3.3	41
34	Macrophage Fusion and Multinucleated Giant Cells of Inflammation. Advances in Experimental Medicine and Biology, 2011, 713, 97-111.	1.6	147
35	Biocompatibility and Bioresponse to Biomaterials. , 2011, , 693-716.		6
36	Mechanism of action of the Adiana® device: a histologic perspective. Contraception, 2011, 84, 299-301.	1.5	7

#	Article	IF	CITATIONS
37	Foreign body-type multinucleated giant cells induced by interleukin-4 express select lymphocyte co-stimulatory molecules and are phenotypically distinct from osteoclasts and dendritic cells. Experimental and Molecular Pathology, 2011, 91, 673-681.	2.1	33
38	Biocompatibility of implants: lymphocyte/macrophage interactions. Seminars in Immunopathology, 2011, 33, 221-233.	6.1	204
39	The topographical effect of electrospun nanofibrous scaffolds on the <i>in vivo</i> and <i>in vitro</i> foreign body reaction. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1151-1159.	4.0	155
40	Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials, 2010, 31, 3479-3491.	11.4	324
41	Polymorphonuclear leukocyte inhibition of monocytes/macrophages in the foreign body reaction. Journal of Biomedical Materials Research - Part A, 2010, 94A, 683-687.	4.0	9
42	<i>In vivo</i> kinetic degradation analysis and biocompatibility of aliphatic polyester polyurethanes. Journal of Biomedical Materials Research - Part A, 2010, 94A, 333-343.	4.0	10
43	Quantitative <i>in vivo</i> cytokine analysis at synthetic biomaterial implant sites. Journal of Biomedical Materials Research - Part A, 2009, 89A, 152-159.	4.0	68
44	Paracrine and juxtacrine lymphocyte enhancement of adherent macrophage and foreign body giant cell activation. Journal of Biomedical Materials Research - Part A, 2009, 89A, 490-498.	4.0	50
45	Lymphocyte adhesion and interactions with biomaterial adherent macrophages and foreign body giant cells. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1210-1220.	4.0	52
46	Dynamic Systems Model for Lymphocyte Interactions with Macrophages at Biomaterial Surfaces. Cellular and Molecular Bioengineering, 2009, 2, 573-590.	2.1	5
47	Giant cell formation and function. Current Opinion in Hematology, 2009, 16, 53-57.	2.5	195
48	In Vitro and In Vivo Monocyte, Macrophage, Foreign Body Giant Cell, and Lymphocyte Interactions with Biomaterials. , 2009, , 225-244.		7
49	Matrix metalloproteinases and their inhibitors in the foreign body reaction on biomaterials. Journal of Biomedical Materials Research - Part A, 2008, 84A, 158-166.	4.0	94
50	Lymphocyte/macrophage interactions: Biomaterial surfaceâ€dependent cytokine, chemokine, and matrix protein production. Journal of Biomedical Materials Research - Part A, 2008, 87A, 676-687.	4.0	85
51	Vitronectin is a critical protein adhesion substrate for ILâ€4â€induced foreign body giant cell formation. Journal of Biomedical Materials Research - Part A, 2008, 86A, 535-543.	4.0	114
52	Instability of selfâ€assembled monolayers as a model material system for macrophage/FBGC cellular behavior. Journal of Biomedical Materials Research - Part A, 2008, 86A, 261-268.	4.0	22
53	Foreign body-type multinucleated giant cell formation requires protein kinase C β, δ, and ζ. Experimental and Molecular Pathology, 2008, 84, 37-45.	2.1	18
54	Foreign body reaction to biomaterials. Seminars in Immunology, 2008, 20, 86-100.	5.6	3,942

#	Article	IF	CITATIONS
55	Biocompatibility and Bioresponse to Biomaterials. , 2008, , 704-723.		8
56	α subunit partners to β1 and β2 integrins during IL-4-induced foreign body giant cell formation. Journal of Biomedical Materials Research - Part A, 2007, 82A, 568-574.	4.0	48
57	Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. Journal of Biomedical Materials Research - Part A, 2007, 83A, 585-596.	4.0	286
58	Phenotypic dichotomies in the foreign body reaction. Biomaterials, 2007, 28, 5114-5120.	11.4	95
59	Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. Biomaterials, 2006, 27, 3920-3926.	11.4	112
60	The future of biomedical materials. Journal of Materials Science: Materials in Medicine, 2006, 17, 1025-1028.	3.6	61
61	Macroporous condensed poly(tetrafluoroethylene). I.In vivo inflammatory response and healing characteristics. Journal of Biomedical Materials Research - Part A, 2006, 76A, 234-242.	4.0	48
62	Antioxidant inhibition of poly(carbonate urethane)in vivo biodegradation. Journal of Biomedical Materials Research - Part A, 2006, 76A, 480-490.	4.0	58
63	Local release of dexamethasone from polymer millirods effectively prevents fibrosis after radiofrequency ablation. Journal of Biomedical Materials Research - Part A, 2006, 76A, 174-182.	4.0	21
64	Multinucleated giant cell formation exhibits features of phagocytosis with participation of the endoplasmic reticulum. Experimental and Molecular Pathology, 2005, 79, 126-135.	2.1	70
65	Surface modification of poly(ether urethane urea) with modified dehydroepiandrosterone for improvedin vivo biostability. Journal of Biomedical Materials Research - Part A, 2005, 73A, 108-115.	4.0	16
66	Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions. Journal of Biomedical Materials Research - Part A, 2005, 73A, 359-366.	4.0	55
67	Lymphocytes and the foreign body response: Lymphocyte enhancement of macrophage adhesion and fusion. Journal of Biomedical Materials Research - Part A, 2005, 74A, 222-229.	4.0	115
68	Monocyte/lymphocyte interactions and the foreign body response:In vitro effects of biomaterial surface chemistry. Journal of Biomedical Materials Research - Part A, 2005, 74A, 285-293.	4.0	59
69	Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes. Journal of Biomedical Materials Research - Part A, 2005, 74A, 141-155.	4.0	55
70	Macrophage behavior on surface-modified polyurethanes. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 567-584.	3.5	59
71	In Vivo Inflammatory and Wound Healing Effects of Gold Electrode Voltammetry for MEMS Micro-Reservoir Drug Delivery Device. IEEE Transactions on Biomedical Engineering, 2004, 51, 627-635.	4.2	31
72	Effect of fibrous capsule formation on doxorubicin distribution in radiofrequency ablated rat livers. Journal of Biomedical Materials Research Part B, 2004, 69A, 398-406.	3.1	17

#	Article	IF	CITATIONS
73	Poly(carbonate urethane) and poly(ether urethane) biodegradation:In vivo studies. Journal of Biomedical Materials Research Part B, 2004, 69A, 407-416.	3.1	160
74	Biomaterial surface-dependent neutrophil mobility. Journal of Biomedical Materials Research Part B, 2004, 69A, 611-620.	3.1	17
75	Repeatedin vivo electrochemical activation and the biological effects of microelectromechanical systems drug delivery device. Journal of Biomedical Materials Research Part B, 2004, 71A, 559-568.	3.1	11
76	Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation:In vivo andin vitro correlations. Journal of Biomedical Materials Research Part B, 2004, 70A, 245-255.	3.1	186
77	Surface chemistry mediates adhesive structure, cytoskeletal organization, and fusion of macrophages. Journal of Biomedical Materials Research Part B, 2004, 71A, 439-448.	3.1	69
78	Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. Journal of Materials Science: Materials in Medicine, 2003, 14, 671-675.	3.6	53
79	In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry. Journal of Biomedical Materials Research Part B, 2003, 64A, 320-329.	3.1	161
80	Effect of strain and strain rate on fatigue-accelerated biodegradation of polyurethane. Journal of Biomedical Materials Research Part B, 2003, 66A, 463-475.	3.1	24
81	Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials, 2003, 24, 1959-1967.	11.4	496
82	Foreign Body-Type Multinucleated Giant Cell Formation Is Potently Induced by α-Tocopherol and Prevented by the Diacylglycerol Kinase Inhibitor R59022. American Journal of Pathology, 2003, 163, 1147-1156.	3.8	63
83	Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10287-10292.	7.1	216
84	β1 and β2 Integrins Mediate Adhesion during Macrophage Fusion and Multinucleated Foreign Body Giant Cell Formation. American Journal of Pathology, 2002, 160, 621-630.	3.8	196
85	Interleukin-4 inhibits tumor necrosis factor-α—induced and spontaneous apoptosis of biomaterial-adherent macrophages. Translational Research, 2002, 139, 90-100.	2.3	47
86	Shear stress and material surface effects on adherent human monocyte apoptosis. Journal of Biomedical Materials Research Part B, 2002, 60, 148-158.	3.1	30
87	Activation of caspase 3 during shear stress-induced neutrophil apoptosis on biomaterials. Journal of Biomedical Materials Research Part B, 2002, 62, 163-168.	3.1	18
88	Adhesion behavior of monocytes, macrophages, and foreign body giant cells on poly (N-isopropylacrylamide) temperature-responsive surfaces. Journal of Biomedical Materials Research Part B, 2002, 59, 136-143.	3.1	43
89	Biological Responses to Materials. Annual Review of Materials Research, 2001, 31, 81-110.	9.3	1,262
90	Healing response to the clamshell device for closure of intracardiac defects in humans. Catheterization and Cardiovascular Interventions, 2001, 54, 101-111.	1.7	40

#	Article	IF	CITATIONS
91	Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. Journal of Biomedical Materials Research Part B, 2001, 58, 302-307.	3.1	146
92	Influence of biomaterial surface chemistry on the apoptosis of adherent cells. Journal of Biomedical Materials Research Part B, 2001, 55, 661-668.	3.1	174
93	Adherent Endotoxin on Orthopedic Wear Particles Stimulates Cytokine Production and Osteoclast Differentiation. Journal of Bone and Mineral Research, 2001, 16, 2082-2091.	2.8	205
94	Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. Journal of Biomedical Materials Research Part B, 2001, 58, 302-307.	3.1	1
95	Multinucleated giant cells. Current Opinion in Hematology, 2000, 7, 40-47.	2.5	310
96	Surface chemistry control of monocyte and macrophage adhesion, morphology, and fusion. , 2000, 49, 141-145.		25
97	Adsorbed serum proteins responsible for surface dependent human macrophage behavior. Journal of Biomedical Materials Research Part B, 2000, 49, 435-447.	3.1	264
98	Adsorbed IgG: A potent adhesive substrate for human macrophages. , 2000, 50, 281-290.		65
99	High molecular weight kininogen inhibition of endothelial cell function on biomaterials. Journal of Biomedical Materials Research Part B, 2000, 51, 1-9.	3.1	7
100	Prevention of monocyte adhesion and inflammatory cytokine production during blood platelet storage: Anin vitro model with implications for transfusion practice. , 2000, 51, 147-154.		11
101	Laboratory-scale mass production of a multi-micropatterned grafted surface with different polymer regions. Journal of Biomedical Materials Research Part B, 2000, 53, 584-591.	3.1	35
102	Monocyte Adhesion to Platelet Concentrate Storage Bags and Cytokine Production. Vox Sanguinis, 2000, 78, 133-133.	1.5	2
103	Adsorbed serum proteins responsible for surface dependent human macrophage behavior. Journal of Biomedical Materials Research Part B, 2000, 49, 435.	3.1	2
104	Disruption of filamentous actin inhibits human macrophage fusion. FASEB Journal, 1999, 13, 823-832.	0.5	67
105	Cytoskeletal and Adhesive Structural Polarizations Accompany IL-13-induced Human Macrophage Fusion. Journal of Histochemistry and Cytochemistry, 1999, 47, 65-74.	2.5	78
106	Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. Journal of Controlled Release, 1999, 57, 107-113.	9.9	132
107	Cyclic-strain-induced endothelial cell expression of adhesion molecules and their roles in monocyte-endothelial interaction. , 1999, 44, 87-97.		26
108	Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formationin vitro. , 1999, 44, 206-216.		99

#	Article	IF	CITATIONS
109	Effects of photochemically immobilized polymer coatings on protein adsorption, cell adhesion, and the foreign body reaction to silicone rubber. , 1999, 44, 298-307.		72
110	Spatial regulation and surface chemistry control of monocyte/macrophage adhesion and foreign body giant cell formation by photochemically micropatterned surfaces. , 1999, 45, 148-154.		68
111	Alkylsilane-modified surfaces: Inhibition of human macrophage adhesion and foreign body giant cell formation. , 1999, 46, 11-21.		48
112	In vitro cytotoxicity andin vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. , 1999, 46, 22-32.		113
113	Shear stress effects on bacterial adhesion, leukocyte adhesion, and leukocyte oxidative capacity on a polyetherurethane. Journal of Biomedical Materials Research Part B, 1999, 46, 511-519.	3.1	49
114	Photochemically immobilized polymer coatings: effects on protein adsorption, cell adhesion, and leukocyte activation. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 1063-1074.	3.5	35
115	Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro. , 1999, 44, 206.		1
116	In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. , 1999, 46, 22.		1
117	Host response to tissue engineered devices. Advanced Drug Delivery Reviews, 1998, 33, 111-139.	13.7	510
118	Recent advances in biomedical polyurethane biostability and biodegradation. Polymer International, 1998, 46, 163-171.	3.1	85
119	Blood and tissue compatibility of modified polyester: Thrombosis, inflammation, and healing. , 1998, 39, 130-140.		56
120	Adhesion ofStaphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. , 1998, 39, 341-350.		45
121	Detection of bacterial adherence on biomedical polymers. , 1998, 39, 415-422.		50
122	Human monocyte/macrophage adhesion, macrophage motility, and IL-4-induced foreign body giant cell formation on silane-modified surfacesin vitro. , 1998, 41, 171-184.		80
123	In vitro andin vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. , 1998, 42, 312-320.		86
124	Bacterial surface properties of clinically isolatedStaphylococcus epidermidis strains determine adhesion on polyethylene. , 1998, 42, 425-432.		73
125	Recent advances in biomedical polyurethane biostability and biodegradation. , 1998, 46, 163.		1
126	Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene. Journal of Biomedical Materials Research Part B, 1998, 42, 425-432.	3.1	3

#	Article	IF	CITATIONS
127	Biocompatibility of Tissue Engineered Implants. , 1998, , 152-165.		8
128	Biocompatibility of ABA triblock copolymer microparticles consisting of poly(l-lactic-co-glycolic-acid) A-blocks attached to central poly(oxyethylene) B-blocks in rats after intramuscular injection. European Journal of Pharmaceutics and Biopharmaceutics, 1997, 43, 19-28.	4.3	25
129	Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 1997, 28, 5-24.	13.7	1,974
130	Comparison of two antioxidants for poly(etherurethane urea) in an acceleratedin vitro biodegradation system. Journal of Biomedical Materials Research Part B, 1997, 34, 493-505.	3.1	37
131	Role of oxygen in biodegradation of poly(etherurethane urea) elastomers. , 1997, 34, 519-530.		103
132	The effect of strain state on the biostability of a poly(etherurethane urea) elastomer. , 1997, 35, 319-329.		30
133	Leukocyte?biomaterial interactions in the presence ofStaphylococcus epidermidis: Flow cytometric evaluation of leukocyte activation (Student Research Award in the Hospital Intern, Resident, or) Tj ETQq1 1 0.78	4314 rgBT	Qverlock 10
134	In vivo biocompatibility and biostability of modified polyurethanes. , 1997, 36, 246-257.		175
135	Directions for improvement of substitute heart valves: National Heart, Lung, and Blood Institute's working group report on heart valves. , 1997, 38, 263-266.		26
136	In vivo biocompatibility and biostability of modified polyurethanes. Journal of Biomedical Materials Research Part B, 1997, 36, 246-257.	3.1	2
137	In vivo biocompatibility study of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to central poly(oxyethylene) B blocks. , 1996, 30, 31-40.		99
138	Complement-mediated leukocyte adhesion on poly(etherurethane ureas) under shear stressin vitro. , 1996, 32, 99-109.		25
139	Vitamin E as an antioxidant for poly(etherurethane urea):In vivo studies. , 1996, 32, 493-504.		46
140	Protein adsorption and macrophage activation on polydimethylsiloxane and silicone rubber. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 159-169.	3.5	90
141	Host Reactions to Biomaterials and Their Evaluation. , 1996, , 165-214.		52
142	In vivo biocompatibility study of ABA triblock copolymers consisting of poly(Lâ€lacticâ€coâ€glycolic acid) A blocks attached to central poly(oxyethylene) B blocks. Journal of Biomedical Materials Research Part B, 1996, 30, 31-40.	3.1	4
143	Host Reactions to Biomaterials and Their Evaluation. , 1996, , 293-X.		2
144	Electroanalytical and biocompatibility studies on microfabricated array sensors. Electroanalysis, 1995, 7, 864-870.	2.9	41

#	Article	IF	CITATIONS
145	Blood-biomaterial interactions in a flow system in the presence of bacteria: Effect of protein adsorption. Journal of Biomedical Materials Research Part B, 1995, 29, 247-256.	3.1	25
146	Oxidative biodegradation mechanisms of biaxially strained poly(etherurethane urea) elastomers. Journal of Biomedical Materials Research Part B, 1995, 29, 337-347.	3.1	112
147	Adhesion ofStaphylococcus epidermidis to biomedical polymers: Contributions of surface thermodynamics and hemodynamic shear conditions. Journal of Biomedical Materials Research Part B, 1995, 29, 485-493.	3.1	66
148	Role for interleukin-4 in foreign-body giant cell formation on a poly(etherurethane urea)in vivo. Journal of Biomedical Materials Research Part B, 1995, 29, 1267-1275.	3.1	141
149	Polyurethane Elastomer Biostability. Journal of Biomaterials Applications, 1995, 9, 321-354.	2.4	330
150	Ion-Selective Microchemical Sensors with Reduced Preconditioning Time. Membrane Biostability Studies and Applications in Blood Analysis. Analytical Letters, 1994, 27, 3039-3063.	1.8	41
151	Theoretical analysis ofin vivo macrophage adhesion and foreign body gaint cell formation on polydimethylsiloxane, low density polyethylene, and polyetherurethanes. Journal of Biomedical Materials Research Part B, 1994, 28, 73-79.	3.1	74
152	Theoretical analysis ofin vivo macrophage adhesion and foreign body giant cell formation on strained poly(etherurethane urea) elastomers. Journal of Biomedical Materials Research Part B, 1994, 28, 819-829.	3.1	46
153	Biocompatibility of a new semisolid bioerodible poly(ortho ester) intended for the ocular delivery of 5-flurouracil. Journal of Biomedical Materials Research Part B, 1994, 28, 1037-1046.	3.1	27
154	Protein adsorption onto poly(ether urethane ureas) containing methacrol 2138F: A surface-active amphiphilic additive. Journal of Biomedical Materials Research Part B, 1993, 27, 255-267.	3.1	34
155	Protein adsorption to poly(ether urethane ureas) modified with acrylate and methacrylate polymer and copolymer additives. Journal of Biomedical Materials Research Part B, 1993, 27, 367-377.	3.1	30
156	Attachment and proliferation of bovine aortic endothelial cells onto additive modified poly(ether) Tj ETQq0 0 0	rgBŢ./Over 3.1	lock 10 Tf 50
157	Protein adsorption and endothelial cell attachment and proliferation on PAPI-based additive modified poly(ether urethane ureas). Journal of Biomedical Materials Research Part B, 1993, 27, 499-510.	3.1	11
158	Biotolerance of a semisolid hydrophobic biodegradable poly(ortho ester) for controlled drug delivery. Journal of Biomedical Materials Research Part B, 1993, 27, 677-681.	3.1	24
159	Platelet-mediated adhesion ofStaphylococcus epidermidis to hydrophobic NHLBI reference polyethylene. Journal of Biomedical Materials Research Part B, 1993, 27, 1119-1128.	3.1	28
160	In vivo biocompatibility studies of medisorb® 65/35 D,L-lactide/glycolide copolymer microspheres. Journal of Controlled Release, 1993, 24, 81-93.	9.9	107
161	Chapter 19 Cardiovascular device retrieval and evaluation. Cardiovascular Pathology, 1993, 2, 199-208.	1.6	12
162	Chapter 4 Mechanisms of inflammation and infection with implanted devices. Cardiovascular Pathology, 1993, 2, 33-41.	1.6	311

#	Article	IF	CITATIONS
163	Biocompatibility studies of naltrexone sustained release formulations. Journal of Controlled Release, 1992, 19, 299-314.	9.9	67
164	Biocompatibility studies on plasm polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces. Journal of Biomedical Materials Research Part B, 1992, 26, 915-935.	3.1	61
165	Protein adsorption from human plasma is reduced on phospholipid polymers. Journal of Biomedical Materials Research Part B, 1991, 25, 1397-1407.	3.1	433
166	Human blood protein and cell interactions with cardiovascular materials. , 1991, , 45-55.		4
167	Ventricular assist device (VAD) pathology analyses: Guidelines for clinical studies. Journal of Applied Biomaterials: an Official Journal of the Society for Biomaterials, 1990, 1, 49-56.	1.2	15
168	In vivo leucocyte interactions on Pellethane $\hat{A}^{ extsf{@}}$ surfaces. Biomaterials, 1990, 11, 370-378.	11.4	31
169	Morphologic characteristics of adsorbed human plasma proteins on vascular grafts and biomaterials. Journal of Vascular Surgery, 1990, 11, 599-606.	1.1	76
170	Morphologic characteristics of adsorbed human plasma proteins on vascular grafts and biomaterials. Journal of Vascular Surgery, 1990, 11, 599-606.	1.1	49
171	Plasma protein adsorbed biomedical polymers: Activation of human monocytes and induction of interleukin 1. Journal of Biomedical Materials Research Part B, 1989, 23, 535-548.	3.1	67
172	Generation of IL1-like activity in response to biomedical polymer implants: A comparison ofin vitro andin vivo models. Journal of Biomedical Materials Research Part B, 1989, 23, 1007-1026.	3.1	77
173	In vitro and in vivo interactions of cells with biomaterials. Biomaterials, 1988, 9, 5-13.	11.4	331
174	Perspectives on In Vivo Testing of Biomaterials, Prostheses, and Artificial Organs. Journal of the American College of Toxicology, 1988, 7, 469-479.	0.2	9
175	Inflammatory Response to Implants. ASAIO Journal, 1988, 34, 101-107.	1.6	516
176	Summary Annals of the New York Academy of Sciences, 1987, 516, 66-67.	3.8	0
177	Vascular graft-associated complement activation and leukocyte adhesion in an artificial circulation. Journal of Biomedical Materials Research Part B, 1987, 21, 379-397.	3.1	43
178	In vivo leucocyte interactions with the NHLBI-DTB primary reference materials: Polyethylene and silica-free polydimethylsiloxane. Biomaterials, 1987, 8, 12-17.	11.4	40
179	The biocompatibility of solution cast and acetone-extracted cast biomer. Journal of Biomedical Materials Research Part B, 1986, 20, 799-815.	3.1	28
180	Collagen Type Distribution in Healing of Synthetic Arterial Prostheses. Connective Tissue Research, 1986, 15, 141-154.	2.3	11

#	Article	IF	CITATIONS
181	The effect of hydrocortisone acetate loaded poly(DL-lactide) films on the inflammatory response. Journal of Controlled Release, 1985, 2, 197-203.	9.9	23
182	The Effect of Heparin vs. Citrate on the Interaction of Platelets with Vascular Graft Materials. Thrombosis and Haemostasis, 1985, 54, 842-848.	3.4	17
183	Biomaterial biocompatibility and the macrophage. Biomaterials, 1984, 5, 5-10.	11.4	368
184	Tissue Responses to Drug Delivery Systems. , 1984, , 23-39.		7
185	In vivo biocompatibility studies. I. The cage implant system and a biodegradable hydrogel. Journal of Biomedical Materials Research Part B, 1983, 17, 301-325.	3.1	165
186	In Vivo Studies on Drug—Polymer Sustained-Release Systems. ACS Symposium Series, 1982, , 85-94.	0.5	0
187	Hemostatic and healing studies of sodium amylose succinate (IP760). Journal of Biomedical Materials Research Part B, 1982, 16, 51-61.	3.1	1
188	Special report: Biomedical materials research in Japan. Journal of Biomedical Materials Research Part B, 1982, 16, 721-733.	3.1	2