Yefeng Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11964378/publications.pdf

Version: 2024-02-01

186265 155660 3,669 54 28 55 h-index citations g-index papers 56 56 56 4832 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heterogeneity in polymer melts from melting of polymer crystals. Nature Materials, 2005, 4, 635-641.	27.5	321
2	An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chemical Engineering Journal, 2017, 325, 14-24.	12.7	281
3	Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. Journal of Materials Chemistry A, 2014, 2, 4117.	10.3	272
4	ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 20428-20438.	10.3	192
5	Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chemical Engineering Journal, 2018, 335, 579-589.	12.7	191
6	Carbon-incorporated Janus-type Ni ₂ P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19054-19061.	10.3	183
7	Design of pomegranate-like clusters with NiS ₂ nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance. Journal of Materials Chemistry A, 2018, 6, 6595-6605.	10.3	159
8	Unprecedented High-Modulus High-Strength Tapes and Films of Ultrahigh Molecular Weight Polyethylene via Solvent-Free Route. Macromolecules, 2011, 44, 5558-5568.	4.8	158
9	Improved sodium-ion storage performance of Ti ₃ C ₂ T _x MXenes by sulfur doping. Journal of Materials Chemistry A, 2018, 6, 1234-1243.	10.3	158
10	Significantly Improved Sodium-Ion Storage Performance of CuS Nanosheets Anchored into Reduced Graphene Oxide with Ether-Based Electrolyte. ACS Applied Materials & Electrolyte.	8.0	149
11	In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chemical Engineering Journal, 2019, 378, 122108.	12.7	136
12	Surface hydrogen bonding can enhance photocatalytic H2 evolution efficiency. Journal of Materials Chemistry A, 2013, 1, 14089.	10.3	113
13	In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. Electrochimica Acta, 2017, 228, 436-446.	5.2	99
14	Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries. Dalton Transactions, 2014, 43, 14931-14935.	3.3	90
15	Supramolecular Self-Assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins. Langmuir, 2004, 20, 484-490.	3.5	84
16	Hyperbranched Polymer Functionalized Carbon Dots with Multistimuli-Responsive Property. ACS Macro Letters, 2013, 2, 1033-1037.	4.8	83
17	Facile dual doping strategy <i>via</i> carbonization of covalent organic frameworks to prepare hierarchically porous carbon spheres for membrane capacitive deionization. Chemical Communications, 2018, 54, 14009-14012.	4.1	74
18	Tailoring molecular structure via nanoparticles for solvent-free processing of ultra-high molecular weight polyethylene composites. Polymer, 2012, 53, 2897-2907.	3.8	68

#	Article	IF	CITATIONS
19	Metal-organic frameworks converted flower-like hybrid with Co3O4 nanoparticles decorated on nitrogen-doped carbon sheets for boosted lithium storage performance. Chemical Engineering Journal, 2018, 354, 172-181.	12.7	68
20	Heterogeneous Distribution of Entanglements in a Nonequilibrium Polymer Melt of UHMWPE: Influence on Crystallization without and with Graphene Oxide. Macromolecules, 2016, 49, 7497-7509.	4.8	64
21	NMR Study on the Effects of Sodium <i>n</i> -Dodecyl Sulfate on the Coil-to-Globule Transition of Poly(<i>N</i> -isopropylacrylamide) in Aqueous Solutions. Macromolecules, 2011, 44, 6227-6231.	4.8	51
22	Controlling Polymer Architecture through Host-Guest Interactions. Angewandte Chemie - International Edition, 2006, 45, 87-90.	13.8	50
23	Thermo-, pH-, and Light-Responsive Supramolecular Complexes Based on a Thermoresponsive Hyperbranched Polymer. ACS Macro Letters, 2013, 2, 67-71.	4.8	43
24	Novel hybrid capacitive deionization constructed by a redox-active covalent organic framework and its derived porous carbon for highly efficient desalination. Journal of Materials Chemistry A, 2019, 7, 25305-25313.	10.3	40
25	Effect of Surfactant Concentration on the Complex Structure of $Poly(\langle i\rangle N\langle i\rangle -isopropylacrylamide)/Sodium \langle i\rangle n\langle i\rangle -Dodecyl Sulfate in Aqueous Solutions. Macromolecules, 2012, 45, 5524-5529.$	4.8	36
26	Identifying Catalytically Active Mononuclear Peroxoniobate Anion of Ionic Liquids in the Epoxidation of Olefins. ACS Catalysis, 2018, 8, 4645-4659.	11.2	36
27	Highly Efficient Epoxidation of Allylic Alcohols with Hydrogen Peroxide Catalyzed by Peroxoniobate-Based Ionic Liquids. ACS Catalysis, 2016, 6, 3354-3364.	11.2	35
28	¹³ C Solid State NMR Characterization of Structure and Orientation Development in the Narrow and Broad Molar Mass Disentangled UHMWPE. Macromolecules, 2014, 47, 1371-1382.	4.8	33
29	Phase Structure and Helical Jump Motion of Poly(ethylene oxide)/LiCF ₃ SO ₃ Crystalline Complex: A High-Resolution Solid-State ¹³ C NMR Approach. Macromolecules, 2013, 46, 4447-4453.	4.8	30
30	Viologen-bridged polyaniline based multifunctional heterofilms for all-solid-state supercapacitors and memory devices. European Polymer Journal, 2018, 98, 125-136.	5.4	29
31	Influence of Crystal Thickness and Topological Constraints on Chain Diffusion in Linear Polyethylene. Macromolecular Rapid Communications, 2009, 30, 1123-1127.	3.9	28
32	Controlling the Particle Size of Interpolymer Complexes through Hostâ "Guest Interaction for Drug Delivery. Langmuir, 2010, 26, 9011-9016.	3.5	27
33	Segmental Dynamics of PEO/LiClO ₄ Complex Crystals and Their Influence on the Li ⁺ â€ion Transportation in Crystal Lattices: A ¹³ C Solidâ€State NMR Approach. Chemistry - A European Journal, 2011, 17, 8941-8946.	3.3	25
34	TiO ₂ nanocrystals embedded in sulfur-doped porous carbon as high-performance and long-lasting anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 24224-24231.	10.3	25
35	Segmental Mobility in the Nonâ€crystalline Regions of Semicrystalline Polymers and its Implications on Melting. Macromolecular Rapid Communications, 2009, 30, 826-839.	3.9	22
36	Switching the photocatalytic activity of g-C3N4 by homogenous surface chemical modification with nitrogen residues and vacancies. RSC Advances, 2015, 5, 21430-21433.	3.6	21

#	Article	IF	CITATIONS
37	lonic Liquid Stabilized Niobium Oxoclusters Catalyzing Oxidation of Sulfides with Exceptional Activity. Chemistry - A European Journal, 2019, 25, 4206-4217.	3.3	20
38	Crystal structure refinements of borate dimorphs inderite and kurnakovite using 11B and 25Mg nuclear magnetic resonance and DFT calculations. American Mineralogist, 2012, 97, 1858-1865.	1.9	17
39	NMR Study of Thermoresponsive Hyperbranched Polymer in Aqueous Solution with Implication on the Phase Transition. Macromolecules, 2013, 46, 9688-9697.	4.8	17
40	Core-shell type hyperbranched grafting copolymers: Preparation, characterization and investigation on their intrinsic fluorescence properties. Polymer, 2016, 107, 154-162.	3.8	17
41	Stimuli-responsive hyperbranched poly(amidoamine)s integrated with thermal and pH sensitivity, reducible degradability and intrinsic photoluminescence. RSC Advances, 2017, 7, 5863-5871.	3.6	16
42	Viologen-based conjugated ionic polymer for nonvolatile rewritable memory device. European Polymer Journal, 2017, 94, 222-229.	5.4	16
43	From Helical Jump to Chain Diffusion. Annual Reports on NMR Spectroscopy, 2010, 69, 199-224.	1.5	15
44	11B and 23Na solid-state NMR and density functional theory studies of electric field gradients at boron sites in ulexite. CrystEngComm, 2013, 15, 8739.	2.6	10
45	Bottom-Up Enhancement of g-C3N4Photocatalytic H2Evolution Utilising Disordering Intermolecular Interactions of Precursor. International Journal of Photoenergy, 2014, 2014, 1-8.	2.5	10
46	lonic liquid-stabilized vanadium oxo-clusters catalyzing alkane oxidation by regulating oligovanadates. Catalysis Science and Technology, 2020, 10, 7601-7612.	4.1	9
47	The phase structure, chain diffusion motion and local reorientation motion: 13C Solid-state NMR study on the highly-crystalline solid polymer electrolytes. Polymer, 2014, 55, 5454-5459.	3.8	8
48	Role of Organic Fluoride Salts in Stabilizing Niobium Oxo-Clusters Catalyzing Epoxidation. Langmuir, 2021, 37, 8190-8203.	3.5	8
49	Density functional theory study of the magnetic shielding mechanism for ¹¹ B in pentaborate minerals: ulexite and probertite. CrystEngComm, 2014, 16, 10418-10427.	2.6	7
50	Preparation of the individual compact single-chain globular particulates of Poly(N-isopropylacrylamide). Colloid and Polymer Science, 2006, 284, 935-940.	2.1	5
51	Solid-State High-Resolution NMR Studies on PEO-Based Crystalline Solid Polymer Electrolytes for Lithium-Ion Battery. Annual Reports on NMR Spectroscopy, 2015, 85, 1-26.	1.5	4
52	Olefin epoxidation with ionic liquid catalysts formed by supramolecular interactions. Molecular Catalysis, 2021, 500, 111342.	2.0	3
53	Threeâ€Component Supramolecular System with Multistimuliâ€Responsive Properties in Water. Chemistry - an Asian Journal, 2015, 10, 1690-1697.	3.3	2
54	Solid-state NMR studies on crystalline solid polymer electrolytes and important cathode materials for lithium-ion batteries. Annual Reports on NMR Spectroscopy, 2020, , 265-308.	1.5	0