
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11961007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NATURAL HISTORY OF PLAGUE: Perspectives from More than a Century of Research. Annual Review of Entomology, 2005, 50, 505-528.	11.8	600
2	Plague: Past, Present, and Future. PLoS Medicine, 2008, 5, e3.	8.4	420
3	Climate and Vectorborne Diseases. American Journal of Preventive Medicine, 2008, 35, 436-450.	3.0	397
4	Potential Influence of Climate Change on Vector-Borne and Zoonotic Diseases: A Review and Proposed Research Plan. Environmental Health Perspectives, 2010, 118, 1507-1514.	6.0	288
5	Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15380-15385.	7.1	203
6	Bartonella Strains from Ground Squirrels Are Identical to Bartonella washoensis Isolated from a Human Patient. Journal of Clinical Microbiology, 2003, 41, 645-650.	3.9	172
7	Adaptive strategies of <i>Yersinia pestis</i> to persist during inter-epizootic and epizootic periods. Veterinary Research, 2009, 40, 01.	3.0	168
8	Transmission of Flea-Borne Zoonotic Agents. Annual Review of Entomology, 2012, 57, 61-82.	11.8	159
9	Modeling relationships between climate and the frequency of human plague cases in the southwestern United States, 1960-1997 American Journal of Tropical Medicine and Hygiene, 2002, 66, 186-196.	1.4	147
10	Plague and Climate: Scales Matter. PLoS Pathogens, 2011, 7, e1002160.	4.7	119
11	Classic flea-borne transmission does not drive plague epizootics in prairie dogs. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6236-6241.	7.1	112
12	Genetic and ecologic characteristics of Bartonella communities in rodents in southern China American Journal of Tropical Medicine and Hygiene, 2002, 66, 622-627.	1.4	111
13	Climate Change Effects on Plague and Tularemia in the United States. Vector-Borne and Zoonotic Diseases, 2007, 7, 529-540.	1.5	98
14	Vector Control Improves Survival of Three Species of Prairie Dogs (<i>Cynomys</i>) in Areas Considered Enzootic for Plague. Vector-Borne and Zoonotic Diseases, 2010, 10, 17-26.	1.5	97
15	Treatment of Black-Tailed Prairie Dog Burrows with Deltamethrin to Control Fleas (Insecta:) Tj ETQq1 1 0.784314	4 rgBT /Ov 1.8	erlgçk 10 Tf
16	Persistence of <i>Yersinia pestis</i> in Soil Under Natural Conditions. Emerging Infectious Diseases, 2008, 14, 941-943.	4.3	95
17	Landscape Structure and Plague Occurrence in Black-tailed Prairie Dogs on Grasslands of the Western USA. Landscape Ecology, 2005, 20, 941-955.	4.2	94
18	Detection of Novel <1>Bartonella Strains and <1>Yersinia pestis in Prairie Dogs and Their Fleas (Siphonaptera: Ceratophyllidae and Pulicidae) Using Multiplex Polymerase Chain Reaction. Journal of Medical Entomology, 2003, 40, 329-337.	1.8	90

#	Article	IF	CITATIONS
19	Epidemiology of Human Plague in the United States, 1900–2012. Emerging Infectious Diseases, 2015, 21, 16-22.	4.3	89
20	Early-phase Transmission of Yersinia pestis by Cat Fleas (Ctenocephalides felis) and Their Potential Role as Vectors in a Plague-endemic Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2008, 78, 949-956.	1.4	83
21	Studies of Vector Competency and Efficiency of North American Fleas for <i>Yersinia pestis</i> : State of the Field and Future Research Needs. Journal of Medical Entomology, 2009, 46, 737-744.	1.8	80
22	Nonviral Vector-Borne Zoonoses Associated with Mammals in the United States. Journal of Mammalogy, 1995, 76, 695.	1.3	79
23	Transmission Efficiency of Two Flea Species (Oropsylla tuberculata cynomuris and Oropsylla hirsuta) Involved in Plague Epizootics among Prairie Dogs. EcoHealth, 2008, 5, 205-212.	2.0	77
24	Early-Phase Transmission of <i>Yersinia pestis</i> by Unblocked <i>Xenopsylla cheopis</i> (Siphonaptera:) Tj ETQq0 678-682.	0 0 rgBT 1.8	/Overlock 10 73
25	Flea Abundance on Black-Tailed Prairie Dogs (<i>Cynomys ludovicianus</i>) Increases During Plague Epizootics. Vector-Borne and Zoonotic Diseases, 2009, 9, 313-321.	1.5	69
26	First Reported Prairie Dog–to-Human Tularemia Transmission, Texas, 2002. Emerging Infectious Diseases, 2004, 10, 483-486.	4.3	67
27	Primary Pneumonic Plague Contracted from a Mountain Lion Carcass. Clinical Infectious Diseases, 2009, 49, e33-e38.	5.8	65
28	Early-Phase Transmission of <i>Yersinia pestis</i> by Unblocked <i>Xenopsylla cheopis</i> (Siphonaptera: Pulicidae) Is as Efficient as Transmission by Blocked Fleas. Journal of Medical Entomology, 2007, 44, 678-682.	1.8	60
29	Human plague in the USA: the importance of regional and local climate. Biology Letters, 2008, 4, 737-740.	2.3	60
30	INITIATION AND SPREAD OF TRAVELING WAVES OF PLAGUE, YERSINIA PESTIS, IN THE WESTERN UNITED STATES. American Journal of Tropical Medicine and Hygiene, 2007, 76, 365-375.	1.4	60
31	Methods for Enhanced Culture Recovery of Francisella tularensis. Applied and Environmental Microbiology, 2004, 70, 3733-3735.	3.1	57
32	Laboratory Analysis of Tularemia in Wild-Trapped, Commercially Traded Prairie Dogs, Texas, 2002. Emerging Infectious Diseases, 2004, 10, 419-425.	4.3	56
33	New Records of Sylvatic Plague in Kansas. Journal of Wildlife Diseases, 2000, 36, 389-392.	0.8	53
34	Identifying Sources of Human Exposure to Plague. Journal of Clinical Microbiology, 2005, 43, 650-656.	3.9	53
35	Testing the Generality of a Trophic-cascade Model for Plague. EcoHealth, 2005, 2, 102-112.	2.0	51
36	Flea Diversity and Infestation Prevalence on Rodents in a Plague-Endemic Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2009, 81, 718-724.	1.4	50

KENNETH L GAGE

#	Article	IF	CITATIONS
37	<i>Oropsylla hirsuta</i> (Siphonaptera: Ceratophyllidae) Can Support Plague Epizootics in Black-Tailed Prairie Dogs (<i>Cynomys ludovicianus</i>) by Early-Phase Transmission of <i>Yersinia pestis</i> . Vector-Borne and Zoonotic Diseases, 2008, 8, 359-368.	1.5	49
38	PCR Detection of Yersinia pestis in Fleas: Comparison with Mouse Inoculation. Journal of Clinical Microbiology, 1999, 37, 1980-1984.	3.9	49
39	DNA Typing of Rickettsiae in Naturally Infected Ticks Using a Polymerase Chain Reaction/Restriction Fragment Length Polymorphism System. American Journal of Tropical Medicine and Hygiene, 1994, 50, 247-260.	1.4	49
40	Biofilm formation is not required for early-phase transmission of Yersinia pestis. Microbiology (United Kingdom), 2010, 156, 2216-2225.	1.8	47
41	Human Plague in the Southwestern United States, 1957–2004: Spatial Models of Elevated Risk of Human Exposure to <1>Yersinia pestis. Journal of Medical Entomology, 2007, 44, 530-537.	1.8	44
42	Human Plague in the Southwestern United States, 1957–2004: Spatial Models of Elevated Risk of Human Exposure toYersinia pestis. Journal of Medical Entomology, 2007, 44, 530-537.	1.8	44
43	The Role of Early-Phase Transmission in the Spread of <i>Yersinia pestis</i> . Journal of Medical Entomology, 2015, 52, 1183-1192.	1.8	44
44	Effects of Low-Temperature Flea Maintenance on the Transmission of <i>Yersinia pestis</i> by <i>Oropsylla montana</i> . Vector-Borne and Zoonotic Diseases, 2013, 13, 468-478.	1.5	43
45	Range-wide Determinants of Plague Distribution in North America. American Journal of Tropical Medicine and Hygiene, 2010, 83, 736-742.	1.4	42
46	Droughts may increase susceptibility of prairie dogs to fleas: incongruity with hypothesized mechanisms of plague cycles in rodents. Journal of Mammalogy, 2016, 97, 1044-1053.	1.3	42
47	A Spatial Model of Shared Risk for Plague and Hantavirus Pulmonary Syndrome in the Southwestern United States. American Journal of Tropical Medicine and Hygiene, 2007, 77, 999-1004.	1.4	42
48	Detection of <i>Rickettsia felis</i> in a New World Flea Species, <i>Anomiopsyllus nudata</i> (Siphonaptera: Ctenophthalmidae). Journal of Medical Entomology, 2005, 42, 163-167.	1.8	41
49	Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. American Journal of Tropical Medicine and Hygiene, 2008, 78, 949-56.	1.4	41
50	Flea Diversity as an Element for Persistence of Plague Bacteria in an East African Plague Focus. PLoS ONE, 2012, 7, e35598.	2.5	40
51	Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microbial Pathogenesis, 2009, 47, 243-251.	2.9	39
52	Residence-Linked Human Plague in New Mexico: A Habitat-Suitability Model. American Journal of Tropical Medicine and Hygiene, 2007, 77, 121-125.	1.4	39
53	Landscape and Residential Variables Associated with Plague-Endemic Villages in the West Nile Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2011, 84, 435-442.	1.4	37

Temporal Dynamics of Early-Phase Transmission of<i>Yersinia pestis</i>by Unblocked Fleas: Secondary Infectious Feeds Prolong Efficient Transmission by<i>Oropsylla montana</i>(Siphonaptera:) Tj ETQq0 0 0 rgBT /Ovær&ock 10 3650 57 Td

#	Article	IF	CITATIONS
55	Assessing Human Risk of Exposure to Plague Bacteria in Northwestern Uganda Based on Remotely Sensed Predictors. American Journal of Tropical Medicine and Hygiene, 2010, 82, 904-911.	1.4	34
56	Using occupancy models to investigate the prevalence of ectoparasitic vectors on hosts: An example with fleas on prairie dogs. International Journal for Parasitology: Parasites and Wildlife, 2013, 2, 246-256.	1.5	34
57	Ecological Traits Driving the Outbreaks and Emergence of Zoonotic Pathogens. BioScience, 2016, 66, 118-129.	4.9	34
58	Seasonal fluctuations of small mammal and flea communities in a Ugandan plague focus: evidence to implicate Arvicanthis niloticus and Crocidura spp. as key hosts in Yersinia pestis transmission. Parasites and Vectors, 2015, 8, 11.	2.5	33
59	Evidence for the involvement of an alternate rodent host in the dynamics of introduced plague in prairie dogs. Journal of Animal Ecology, 2009, 78, 807-817.	2.8	32
60	Demonstration of Early-Phase Transmission of <i>Yersinia pestis</i> by the Mouse Flea, <i>Aetheca wagneri</i> (Siphonaptera: Ceratophylidae), and Implications for the Role of Deer Mice as Enzootic Reservoirs. Journal of Medical Entomology, 2008, 45, 1160-1164.	1.8	31
61	Transmission Shifts Underlie Variability in Population Responses to Yersinia pestis Infection. PLoS ONE, 2011, 6, e22498.	2.5	31
62	Temporal Dynamics of Early-Phase Transmission of <i>Yersinia pestis</i> by Unblocked Fleas: Secondary Infectious Feeds Prolong Efficient Transmission by <i>Oropsylla montana</i> (Siphonaptera: Ceratophyllidae). Journal of Medical Entomology, 2007, 44, 672-677.	1.8	29
63	Demonstration of Early-Phase Transmission of Yersinia pestis by the Mouse Flea, Aetheca wagneri (Siphonaptera: Ceratophylidae), and Implications for the Role of Deer Mice as Enzootic Reservoirs. Journal of Medical Entomology, 2008, 45, 1160-1164.	1.8	29
64	Factors Affecting the Spread and Maintenance of Plague. Advances in Experimental Medicine and Biology, 2012, 954, 79-94.	1.6	29
65	Spatial Risk Models for Human Plague in the West Nile Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2009, 80, 1014-1022.	1.4	29
66	Abundance patterns of two Oropsylla (Ceratophyllidae: Siphonaptera) species on black-tailed prairie dog (Cynomys ludovicianus) hosts. Journal of Vector Ecology, 2006, 31, 355-363.	1.0	27
67	Single-Nucleotide Polymorphisms Reveal Spatial Diversity Among Clones of <i>Yersinia pestis</i> During Plague Outbreaks in Colorado and the Western United States. Vector-Borne and Zoonotic Diseases, 2015, 15, 291-302.	1.5	27
68	Climatic Predictors of the Intra- and Inter-Annual Distributions of Plague Cases in New Mexico Based on 29 Years of Animal-Based Surveillance Data. American Journal of Tropical Medicine and Hygiene, 2010, 82, 95-102.	1.4	26
69	Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period. Parasites and Vectors, 2011, 4, 191.	2.5	26
70	LPS modification promotes maintenance of Yersinia pestis in fleas. Microbiology (United Kingdom), 2015, 161, 628-638.	1.8	26
71	Historical and genomic data reveal the influencing factors on global transmission velocity of plague during the Third Pandemic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11833-11838.	7.1	25
72	Detection of <1>Rickettsia felis 1 in a New World Flea Species, <1>Anomiopsyllus nudata 1 (Siphonaptera: Ctenophthalmidae). Journal of Medical Entomology, 2005, 42, 163-167.	1.8	24

#	Article	IF	CITATIONS
73	Exposure of Small Rodents to Plague during Epizootics in Black-tailed Prairie Dogs. Journal of Wildlife Diseases, 2008, 44, 724-730.	0.8	24
74	Fine-scale Identification of the Most Likely Source of a Human Plague Infection. Emerging Infectious Diseases, 2009, 15, 1623-1625.	4.3	24
75	Climate Predictors of the Spatial Distribution of Human Plague Cases in the West Nile Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2012, 86, 514-523.	1.4	23
76	Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae). Microbiology (United Kingdom), 2014, 160, 2517-2525.	1.8	23
77	Effects of Temperature on Early-Phase Transmission of Yersina pestis by the Flea, Xenopsylla cheopis. Journal of Medical Entomology, 2011, 48, 411-417.	1.8	22
78	Phenotypic and molecular characterizations of Yersinia pestis isolates from Kazakhstan and adjacent regions. Microbiology (United Kingdom), 2007, 153, 169-177.	1.8	22
79	Flea (Siphonaptera: Ceratophyllidae, Hystrichopsyllidae) and Tick (Acarina: Ixodidae) Control on Wood Rats Using Host-Targeted Liquid Permethrin in Bait Tubes. Journal of Medical Entomology, 1997, 34, 46-51.	1.8	21
80	Source of Host Blood Affects Prevalence of Infection and Bacterial Loads of <i>Yersinia pestis</i> in Fleas. Journal of Medical Entomology, 2008, 45, 933-938.	1.8	21
81	Evaluation of the Infectiousness to Mice of Soil Contaminated with Yersinia pestis-Infected Blood. Vector-Borne and Zoonotic Diseases, 2012, 12, 948-952.	1.5	21
82	Identification of Risk Factors for Plague in the West Nile Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2014, 90, 1047-1058.	1.4	21
83	Evidence that rodent control strategies ought to be improved to enhance food security and reduce the risk of rodent-borne illnesses within subsistence farming villages in the plague-endemic West Nile region, Uganda. International Journal of Pest Management, 2013, 59, 259-270.	1.8	20
84	Identification of Flea Blood Meals Using Multiplexed Real-Time Polymerase Chain Reaction Targeting Mitochondrial Gene Fragments. American Journal of Tropical Medicine and Hygiene, 2009, 80, 998-1003.	1.4	20
85	A spatial model of shared risk for plague and hantavirus pulmonary syndrome in the southwestern United States. American Journal of Tropical Medicine and Hygiene, 2007, 77, 999-1004.	1.4	20
86	Molecular Characterization of the sucB Gene Encoding the Immunogenic Dihydrolipoamide Succinyltransferase Protein of Bartonella vinsonii subsp. berkhoffii and Bartonella quintana. Infection and Immunity, 2003, 71, 4818-4822.	2.2	19
87	Initiation and spread of traveling waves of plague, Yersinia pestis, in the western United States. American Journal of Tropical Medicine and Hygiene, 2007, 76, 365-75.	1.4	19
88	Colorado animal-based plague surveillance systems: relationships between targeted animal species and prediction efficacy of areas at risk for humans. Journal of Vector Ecology, 2009, 34, 22-31.	1.0	17
89	<i>Bartonella</i> Species in Invasive Rats and Indigenous Rodents from Uganda. Vector-Borne and Zoonotic Diseases, 2014, 14, 182-188.	1.5	17
90	Spatial risk models for human plague in the West Nile region of Uganda. American Journal of Tropical Medicine and Hygiene, 2009, 80, 1014-22.	1.4	17

#	Article	IF	CITATIONS
91	Quantities ofYersinia pestisin Fleas (Siphonaptera: Pulicidae, Ceratophyllidae, and Hystrichopsyllidae) Collected from Areas of Known or Suspected Plague Activity. Journal of Medical Entomology, 2000, 37, 422-426.	1.8	16
92	Source of Host Blood Affects Prevalence of Infection and Bacterial Loads of <i>Yersinia pestis</i> in Fleas. Journal of Medical Entomology, 2008, 45, 933-938.	1.8	16
93	Prevalence of Yersinia pestis in Rodents and Fleas Associated with Black-tailed Prairie Dogs (Cynomys) Tj ETQq 731-736.	1 1 0.7843 0.8	14 rgBT /Ove 16
94	Evaluation of Rodent Bait Containing Imidacloprid for the Control of Fleas on Commensal Rodents in a Plague-Endemic Region of Northwest Uganda. Journal of Medical Entomology, 2010, 47, 842-850.	1.8	16
95	Annual Seroprevalence of <i>Yersinia pestis</i> in Coyotes as Predictors of Interannual Variation in Reports of Human Plague Cases in Arizona, United States. Vector-Borne and Zoonotic Diseases, 2011, 11, 1439-1446.	1.5	16
96	Flea-Associated Bacterial Communities across an Environmental Transect in a Plague-Endemic Region of Uganda. PLoS ONE, 2015, 10, e0141057.	2.5	16
97	Prevalence of the Generalist Flea <i>Pulex simulans</i> on Black-tailed Prairie Dogs (<i>Cynomys) Tj ETQq1 1 C Wildlife Diseases, 2015, 51, 498-502.</i>	0.784314 rg 0.8	BT /Overlock 16
98	Residence-linked human plague in New Mexico: a habitat-suitability model. American Journal of Tropical Medicine and Hygiene, 2007, 77, 121-5.	1.4	16
99	Efficacy of Indoor Residual Spraying Using Lambda-Cyhalothrin for Controlling Nontarget Vector Fleas (Siphonaptera) on Commensal Rats in a Plague Endemic Region of Northwestern Uganda. Journal of Medical Entomology, 2012, 49, 1027-1034.	1.8	15
100	Hispid Cotton Rats (Sigmodon hispidus) as a Source for Infecting Immature Dermacentor variabilis (Acari: Ixodidae) with Rickettsia rickettsii. Journal of Medical Entomology, 1990, 27, 615-619.	1.8	14
101	Quantities of <i>Yersinia pestis</i> in Fleas (Siphonaptera: Pulicidae, Ceratophyllidae, and) Tj ETQq1 1 0.7843 Entomology, 2000, 37, 422-426.	l 4 rgBT /Ον 1.8	erlock 10 Tf 14
102	Wild Felids as Hosts for Human Plague, Western United States. Emerging Infectious Diseases, 2009, 15, 2021-2024.	4.3	14
103	Interactions Among Symbionts of <i>Oropsylla</i> spp. (Siphonoptera: Ceratophyllidae). Journal of Medical Entomology, 2012, 49, 492-496.	1.8	14
104	Molecular Survey of <i>Bartonella</i> Species and <i>Yersinia pestis</i> in Rodent Fleas (Siphonaptera) From Chihuahua, Mexico. Journal of Medical Entomology, 2016, 53, 199-205.	1.8	14
105	Prairie dog presence affects occurrence patterns of disease vectors on small mammals. Ecography, 2008, 31, 654-662.	4.5	13
106	Combining Real-Time Polymerase Chain Reaction Using SYBR Green I Detection and Sequencing to Identify Vertebrate Bloodmeals in Fleas. Journal of Medical Entomology, 2012, 49, 1442-1452.	1.8	13
107	<i>Yersinia pestis</i> infection and laboratory conditions alter flea-associated bacterial communities. ISME Journal, 2013, 7, 224-228.	9.8	13
108	Blood Meal Identification in Off-Host Cat Fleas (Ctenocephalides felis) from a Plague-Endemic Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2013, 88, 381-389.	1.4	13

#	Article	IF	CITATIONS
109	Comparison of Zoonotic Bacterial Agents in Fleas Collected from Small Mammals or Host-Seeking Fleas from a Ugandan Region Where Plague Is Endemic. MSphere, 2017, 2, .	2.9	13
110	Identification of flea blood meals using multiplexed real-time polymerase chain reaction targeting mitochondrial gene fragments. American Journal of Tropical Medicine and Hygiene, 2009, 80, 998-1003.	1.4	13
111	Evaluation of Rodent Bait Containing Imidacloprid for the Control of Fleas on Commensal Rodents in a Plague-Endemic Region of Northwest Uganda. Journal of Medical Entomology, 2010, 47, 842-850.	1.8	12
112	An Evaluation of Removal Trapping to Control Rodents Inside Homes in a Plague-Endemic Region of Rural Northwestern Uganda. Vector-Borne and Zoonotic Diseases, 2018, 18, 458-463.	1.5	11
113	Evaluation of the Effect of Host Immune Status on Short-TermYersinia pestisInfection in Fleas With Implications for the Enzootic Host Model for Maintenance ofY. pestisDuring Interepizootic Periods. Journal of Medical Entomology, 2014, 51, 1079-1086.	1.8	9
114	Ecology and Management of Plague in Diverse Communities of Rodents and Fleas. Vector-Borne and Zoonotic Diseases, 2020, 20, 888-896.	1.5	9
115	Development of a Real-time Quantitative PCR Assay to Enumerate Yersinia pestis in Fleas. American Journal of Tropical Medicine and Hygiene, 2008, 79, 99-101.	1.4	9
116	Cotton Rats and Other Small Mammals as Hosts for Immature Dermacentor variabilis (Acari: Ixodidae) in Central Oklahoma. Journal of Medical Entomology, 1992, 29, 832-842.	1.8	8
117	Evaluation and Modification of Off-Host Flea Collection Techniques Used in Northwest Uganda: Laboratory and Field Studies. Journal of Medical Entomology, 2012, 49, 210-214.	1.8	8
118	Use of Insecticide Delivery Tubes for Controlling Rodent-Associated Fleas in a Plague Endemic Region of West Nile, Uganda. Journal of Medical Entomology, 2014, 51, 1254-1263.	1.8	8
119	Rat Fall Surveillance Coupled with Vector Control and Community Education as a Plague Prevention Strategy in the West Nile Region, Uganda. American Journal of Tropical Medicine and Hygiene, 2018, 98, 238-247.	1.4	7
120	Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas. American Journal of Tropical Medicine and Hygiene, 2008, 79, 99-101.	1.4	6
121	Changing Socioeconomic Indicators of Human Plague, New Mexico, USA. Emerging Infectious Diseases, 2012, 18, 1151-1154.	4.3	5
122	Acquisition of Bartonella elizabethae by Experimentally Exposed Oriental Rat Fleas (Xenopsylla) Tj ETQq0 0 0 rgBT Entomology, 2018, 55, 1292-1298.	/Overlock 1.8	10 Tf 50 22 5
123	Bacterial and Rickettsial Diseases. , 2004, , 377-413.		5
124	Geographic variation in rodent-flea relationships in the presence of black-tailed prairie dog colonies. Journal of Vector Ecology, 2008, 33, 178-190.	1.0	4
125	Exposing Laboratory-Reared Fleas to Soil and Wild Flea Feces Increases Transmission of Yersinia pestis. American Journal of Tropical Medicine and Hygiene, 2013, 89, 784-787.	1.4	4
126	The changing triad of plague in Uganda: invasive black rats(Rattus rattus), indigenous small mammals, and their fleas. Journal of Vector Ecology, 2020, 45, 333-355.	1.0	4

Kenneth	L Gage
	2 0/102

#	Article	IF	CITATIONS
127	Epidemiology, Ecology and Prevention of Plague in the West Nile Region of Uganda: The Value of Long-Term Field Studies. American Journal of Tropical Medicine and Hygiene, 2021, 105, 18-23.	1.4	4
128	Bacterial and Rickettsial Diseases. , 2000, , 377-413.		2
129	Cluff E. Hopla (1917–2008). Journal of Medical Entomology, 2009, 46, 173-174.	1.8	0